• Title/Summary/Keyword: 구조 건전성 모니터링

Search Result 203, Processing Time 0.025 seconds

Active Lamb Wave Propagation-based Structural Health Monitoring for Steel Plate (능동 램파 전파에 기초한 강판의 구조건전성 모니터링)

  • Jeong, Woon;Seo, Ju-Won;Kim, Hyeung-Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.421-431
    • /
    • 2009
  • This paper is the study on the verification of structural health monitoring (SHM) algorithm based on the ultrasonic guided wave. An active inspection system using Lamb wave (LW) for SHM was considered. The basic study about the application of this algorithm was performed for detecting the circular notch defect in steel plate. LW testing technique, pitch-catch method, was used for interpretation of circular notch defect with depth of 50% of plate thickness and 7 mm width. Damage characterization takes place by comparing $S_0$ mode sensor signals collected before and after the damage event. By subtracting the signals of both conditions from each other, a scatter signal is produced which can be used for damage localization. The continuous Gabor wavelet transform is used to attain the time between the arrivals of the scatter and sensor signals. A new practical damage monitoring algorithm, based on damage monitoring polygon and pitch-catch method, has been proposed and verified with good accuracy. The possible damage location can be estimated by the average on calculated location points and the damage extent by the standard deviation.

Fiber Optic Displacement Sensor System for Structural Health Monitoring (구조 건전성 모니터링을 위한 광섬유 변위 센서 시스템 개발)

  • Lee, Kun-Ho;Ahn, Byung-Jun;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.374-381
    • /
    • 2011
  • It has been doing to research on novel techniques for structural health monitoring by applying various sensor techniques to measure the deflection in mechanical and civil structures. Several electric-based displacement sensors have many difficulties for using them because of EMI (Electro-Magnetic Interference) noise of many lead-wires when they are installed to many points in the structures. In this paper, it is proposed an affordable intensity-based fiber optic sensor to measure small displacement solving the problems of conventional sensors. In detail, the sensor head was designed on the basis of the principle of bending loss and a basic experiment was performed to obtain the sensitivity, the linearity and the stroke of the sensor. Moreover, a prototype was designed and manufactured to be easily installed to a structure and a real-time control software was also successfully developed to drive the fiber optic sensor system.

Microstructural Characterization for Structural Health Monitoring of Heat-Resisting Rotor Steels (로터용 내열강의 구조 건전성 모니터링을 위한 미세 조직 평가)

  • Kim, C.S.;Byeon, Jae-Won;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • The typical heat-resisting rotor steels such as 2.25CrMo, 9CrMo and 12CrW steel were experimentally studied in order to understand their materials degradation under high temperature and pressure during the long-term service, and then use the basic studies for the structural health monitoring. In order to monitor the materials degradation, it was conducted by the isothermal aging for 2.25CrMo steel, creep-fatigue for 9CrMo steel and creep for 12Cr steel with the incremental step test. The ultrasonic wave properties, electrical resistivity and coercivity were interpreted in relation to microstructural changes at each material and showed strong sensitivity to the specific microstructural evolution.

Selection of Sensing Members in a High-rise Building Structures using Displacement Participation Factors and Strain Energy Density (변위기여도 및 변형에너지밀도를 활용한 초고층 건물의 센싱 부재 선정)

  • Lee, Hong-Min;Park, Sung-Woo;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2009
  • To rationally secure and maintain the safety and serviceability of a high-rise building, monitoring of structural responses of members is necessary. As such health monitoring of large-scale building structures has received growing attention by researchers in recent years. However, due to a very large number of members complexity of structural responses of a high-rise building structure, practical difficulties exist in selection of structural members to be sensored for assessment of structural safety of a structure. In this paper, a selection technique for active members for safety monitoring of a high-rise building based on displacement participation factor and strain energy density of a member is investigated.

Assessment Model for the Safety and Serviceability of Structures using Terrestrial LiDAR (지상라이다를 이용한 구조물의 안전 및 사용성 평가 모델)

  • Lee, Hong-Min;Park, Hyo-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.17-28
    • /
    • 2006
  • Structural health monitoring is important to maintain the safety and serviceability of the structures. The displacement in the structure should be precisely and frequently monitored because it is a direct assessment index indicating its stiffness. However, no practical method has been developed to monitor such displacement precisely, particularly for high-rise buildings and long span bridges because they cannot be easily accessible. To overcome such difficult accessibility, we propose to use a LIDAR system that remotely samples the surface of an object using laser pulses and generates the coordinates of numerous points on the surface. In this study, using terrestrial LiDAR, we develop a novel displacement measuring model for structural health monitoring and perform an indoor experiment to prove its performance.

Baseline Model Updating and Damage Estimation Techniques for Tripod Substructure (트라이포드 하부구조물의 기저모델개선 및 결함추정 기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.218-226
    • /
    • 2020
  • An experimental study was conducted on baseline model updating and damage estimation techniques for the health monitoring of offshore wind turbine tripod substructures. First, a procedure for substructure health monitoring was proposed. An initial baseline model for a scaled model of a tripod substructure was established. A baseline model was updated based on the natural frequencies and the mode shapes measured in the healthy state. A training pattern was then generated using the updated baseline model, and the damage was estimated by inputting the modal parameters measured in the damaged state into the trained neural network. The baseline model could be updated reasonably using the effective fixity model. The damage tests were performed, and the damage locations could be estimated reasonably. In addition, the estimated damage severity also increased as the actual damage severity increased. On the other hand, when the damage severity was relatively small, the corresponding damage location was detected, but it was more difficult to identify than the other cases. Further studies on small damage estimation and stiffness reduction quantification will be needed before the presented method can be used effectively for the health monitoring of tripod substructures.

Construction of wireless sensor network for structural health monitoring of large-scale buildings (대형 건물의 구조 건전도 모니터링을 위한 무선 센서 네트워크 구성)

  • Lee, Hong-Min;Kim, Jong-Moon;Hong, Jung-Bum;Park, Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.221-224
    • /
    • 2009
  • 최근 사회기반시설을 대상으로 900 MHz - 2.45 GHz 대역의 무선 센서 네트워크 시스템을 이용한 구조반응 모니터링 연구가 수행되고 있다. 건물의 경우 수직, 수평으로 구조 부재, 칸막이 벽, 외장재 등에 의해서 공간이 차단되어 있고, 전파 간섭의 영향이 상대적으로 크기 때문에 900 MHz - 2.4 GHz 대역의 무선 네트워크 시스템은 그 한계가 있다. 본 논문에서는 이러한 문제점을 고려하여 장애물에 대한 회절성이 뛰어나고 전파의 간섭이 상대적으로 작은 저주파 대역의 무선 라디오 주파수를 도입한다. 이로부터 특히 지진 또는 바람의 영향 등의 외부 하중에 의하여 대규모 인명 손실을 초래할 수 있는 중요도가 매우 높은 대형 건물을 대상으로 실제 적용이 가능한 무선 센서 네트워크를 구성해 보았다.

  • PDF

Mobile Warning System for Health of Structure (구조물 건전성 진단을 위한 모바일 경보 시스템)

  • Ju, Seung-Hwan;Seo, Hee-Suk;Lee, Seung-Jae;Kim, Min-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.304-307
    • /
    • 2010
  • 1990년 이후 우리나라를 둘러싼 동북아시아를 비롯하여 동남아시아의 도시에 이르기까지 지진, 태풍, 쓰나미 등의 환경재해가 빈발하고 있는 상황이다. 인간이 건축한 구조물들은 다양한 자연재해로부터 취약할 수밖에 없으므로, 이를 최대한 빠르게 확인하여 경보하는 것만이 인명 및 재산의 피해를 최소화할 수 있는 방법이다. 본 연구에서는 구조물 건전성 진단을 위한 통합 모니터링 시스템을 제공하고, 발생한 사건을 조기에 대응하기 위해 SMS(Short Message Service)를 활용하여 시설물 유지관리 담당자에게 경보를 보내는 시스템에 대하여 소개한다. PDA나 스마트폰을 갖고 있는 관리자는 실시간으로 통합 모니터링 시스템에 접근하여, 해당 구조물의 상태를 확인함으로써 피해 상황을 파악한다. 시설물 유지 관리자에게 건전성 유무를 판단할 자료를 실시간으로 제공하는 것은 조기대응으로 인한 현재의 피해를 최소화할 수 있으며, 추후 발생할 수 있는 추가적인 피해를 예방할 수 있는 장점이 있다.