• Title/Summary/Keyword: 구조적특징

Search Result 4,302, Processing Time 0.037 seconds

Face Recognition Algorithm Using Facial Features And Structural Feature Angles of Face (얼굴 특징자와 구조적 특징 각을 이용한 얼굴인식 알고리즘)

  • 김정훈;김영일;이응주
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.143-146
    • /
    • 2001
  • 본 논문에서는 칼라 CCD 카메라로부터 입력된 얼굴 영상에서 HSI 정보와 눈, 코, 입 등의 얼굴 영역 특징자와 특징자들의 구조적 특징각을 이용한 얼굴 인식 알고리즘을 제안하였다. 제안한 알고리즘에서는 인간의 시각 체계와 비교적 유사한 HSI좌표계 상에서 피부색에 대한 색상 정보와 명암값 정보를 함께 이용함으로써 얼굴영역 추출의 효율을 높였고, 또한 추출된 얼굴 영역에서 얼굴 인식을 개선을 위해 눈, 코, 입 등의 구조적 위치 정보와 특징자들의 구조적 특징각인 θ/sub 1(ACRCD)/, θ/sub 2(ACRMD)/, θ/sub 3(ANRED)/, θ/sub 4(AMRED)/를 이용하여 얼굴 인식율을 개선하였다. 제안한 알고리즘에서는 기존의 명암 정보를 이용하는 방법과는 달리 색상 정보와 명암 정보 그리고 구조적특징각을 함께 이용함으로써 정확한 얼굴 영역의 검출이 가능하였으며 인식 방법에 있어서 특징자들의 구조적 관계값을 이용함으로써 인식 효율을 개선하였다.

  • PDF

Structural Analysis of Facial Expressions Measured by a Standard Mesh Frame (표준형상모형 정합을 통한 얼굴표정 구조 분석)

  • 한재현;심연숙;변혜란;오경자;정찬섭
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.271-276
    • /
    • 1999
  • 자동 표정인식 및 합성 기술과 내적상태별 얼굴표정 프로토타입 작성의 기초 작업으로서 특정 내적상태를 표현하는 얼굴표정의 특징적 구조를 분석하였다. 내적상태의 평정 절차를 거쳐 열 다섯 가지의 내적상태로 명명된 배우 여섯 명에 대한 영상자료 90장을 사용하여 각 표정의 특징적 구조를 발견하고자 하였다. 서로 다른 얼굴들의 표준화 작업과 서로 다른 표정들의 직접 비교 작업에 정확성을 기하기 위하여 각 표정 표본들을 한국인 표준형상모형에 정합하였다. 정합 결과로 얻어진 각 얼굴표정의 특징점에 대해 모형이 규정하고 있는 좌표값들만으로는 표정해석이 불가능하며 중립얼굴로부터의 변화값이 표정해석에 유효하다는 결론을 얻었다. 표정의 특징적 구조는 그 표정이 표현하는 내적상태가 무엇인가에 따라 발견되지 않는 경우도 있었으며 내적상태가 기본정서에 가까울수록 비교적 일관된 형태를 갖는 것으로 나타났다. 내적상태별 특징적 표정을 결정할 수 있는 경우에 표정의 구조는 얼굴표정 요소들 중 일부에 의해서 특징지어짐을 확인하였다.

  • PDF

Creation of Soccer Video Highlight Using The Structural Features of Caption (장면자막의 구조적 특징을 이용한 축구 비디오 하이라이트 생성)

  • Shin Seong-Yoon;Rhee Yang-Won
    • Annual Conference of KIPS
    • /
    • 2004.11a
    • /
    • pp.637-640
    • /
    • 2004
  • 논문에서는 자막의 구조적 특징을 이용하여 축구 비디오 하이라이트를 생성하는 방법을 제시한다. 자막의 구조적 특징은 자막이 갖는 시간적 특징과 공간적 특징으로서 이러한 구조적 특징을 이용하여 자막 프레임 구간과 자막 키 프레임을 추출한다. 그리고 하이라이트 비디오는 자막 키 프레임들에 대한 장면 재설정과 논리적 색인화 및 하이라이트 생성 규칙을 이용하여 생성한다. 마지막으로, 브라우저를 통한 사용자의 항목 선택에 의하여 하이라이트 비디오와 비디오 세그먼트에 대한 검색과 브라우징을 수행할 수 있다.

  • PDF

Face Expression Recognition Algorithm Using Geometrical Properties of Face Features and Accumulated Histogram (얼굴 특징자들의 구조적 특성과 누적 히스토그램을 이용한 얼굴 표정 인식 알고리즘)

  • 김영일;이응주
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.293-296
    • /
    • 2000
  • 본 논문에서는 얼굴의 구조적 특성과 누적 히스토그램을 이용하여 다양한 정보를 포함하고 있는 얼굴의 6가지 표정을 인식하는 알고리즘을 기술하였다. 표정 인식을 위해 특징점 추출 전처리 과정으로 입력 영상으로부터 에지 추출, 이진화, 잡음 제거, 모폴로지 기법을 이용한 팽창, 레이블링 순으로 적용한다. 본 논문은 레이블 영역의 크기를 이용해 1차 특징점 영역을 추출하고 가로방향의 누적 히스토그램 값과 대칭성의 구조적인 관계를 이용하여 2차 특징점 추출 과정을 거쳐 정확하게 눈과 입을 찾아낸다. 또한 표정 변화를 정량적으로 측정하기 위해 추출된 특징점들의 눈과 입의 크기, 미간 사이의 거리 그리고 눈에서 입까지의 거리 정보를 이용하여 표정을 인식한다. 1, 2차 특징점 추출 과정을 거치므로 추출률이 매우 높고 특징점들의 표정에 따른 변화 거리를 이용하므로 표정 인식률이 높다. 본 논문은 안경 착용 영상과 같이 복잡한 얼굴 영상에서도 표정 인식이 가능하다.

  • PDF

A Recognition Algorithm of Handwritten Numerals based on Structure Features (구조적 특징기반 자유필기체 숫자인식 알고리즘)

  • Song, Jeong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.151-156
    • /
    • 2018
  • Because of its large differences in writing style, context-independency and high recognition accuracy requirement, free handwritten digital identification is still a very difficult problem. Analyzing the characteristic of handwritten digits, this paper proposes a new handwritten digital identification method based on combining structural features. Given a handwritten digit, a variety of structural features of the digit including end points, bifurcation points, horizontal lines and so on are identified automatically and robustly by a proposed extended structural features identification algorithm and a decision tree based on those structural features are constructed to support automatic recognition of the handwritten digit. Experimental result demonstrates that the proposed method is superior to other general methods in recognition rate and robustness.

Human Face Recognition Using Color Informations and Geometrical Features of Chin line (칼라정보와 턱선의 구조적 특징자를 이용한 얼굴 인식 알고리즘)

  • 이명영;문인수;이응주
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.209-212
    • /
    • 2000
  • 본 논문에서는 칼라 CCD 카메라로부터 입력된 얼굴 영상에서 칼라 정보와 눈, 코, 입 등의 얼굴 영역 특징자 및 턱선의 선형적 특징을 이용한 얼굴 인식 알고리즘을 제안하였다. 제안한 알고리즘에서는 인간의 시각 체계와 비교적 유사한 HSI좌표계 상에서 피부색에 대한 색상 정보와 명암값 정보를 함께 이용함으로써 얼굴영역 추출의 효율을 높였고, 적응적인 추출이 가능하도록 하였다. 또한 추출된 얼굴 영역에서 얼굴 인식율 개선을 위해 눈, 코, 입 등의 구조적 위치 정보와 턱선의 선형적인 특징값을 이용하여 얼굴 인식율을 개선하였다. 제안한 알고리즘에서는 기존의 명암 정보를 이용하는 방법과는 달리 색상 정보와 명암 정보를 함께 이용함으로써 정확한 얼굴 영역의 검출이 가능하였으며 인식 방법에 있어서 구조적 특징자 외에 턱선의 선형적인 관계값을 이용함으로써 인식 효율을 개선하였다.

  • PDF

Markov Models based Classification of Fingerprint Structural Features (마코프 모텔 기반 지문의 구조적 특징 분류)

  • Jung Hye-Wuk;Won Jong-Jin;Kim Moon-Hyun
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.33-38
    • /
    • 2005
  • 지문분류는 대규모 인증시스템에 사용되는 지문 데이터 베이스를 종류별로 인덱싱 하거나 인식 시스템에 다양하게 쓰이는 매우 중요한 방법이다. 지문은 일반적으로 융선의 전체모양 등 전역적인 특징을 기반으로 분류하며, 분류방법에는 규칙기반 접근, 구문론적 접근, 구조적 접근, 통계적 접근, 신경망 기반 접근 등이 있다. 본 논문에서는 지문의 구조적인 특징을 바탕으로 관찰되는 특징의 상태가 매순간 변화하는 확률론적 정보추출 방식인 마코프 모델을 적용한 지문분류 방법을 제안한다. 지문 이미지의 전처리 과정을 거친 후 각 클래스 분류를 위해 대표 융선을 찾아 방향정보를 추출하고 이를 이용하여 5가지 클래스로 분류될 수 있도록 설계하였다. 좋은품질(Good)과 나쁜품질(Poor)의 데이터를 포함한 훈련집합을 사용하여 각 클래스별로 학습된 마코프 모델은 임의의 지문이미지 분류시 높은 분류율을 보였다. 또한 기존의 구조적 접근방법에 비하여 다양한 품질의 지문이미지의 방향성 정보를 이용한 확률론적 방법이기 때문에 예외적인 지문이미지 분류시 잘 적용될 수 있다.

  • PDF

Creation of Soccer Video Highlight Using The Structural Features of Caption (자막의 구조적 특징을 이용한 축구 비디오 하이라이트 생성)

  • Huh, Moon-Haeng;Shin, Seong-Yoon;Lee, Yang-Weon;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.10D no.4
    • /
    • pp.671-678
    • /
    • 2003
  • A digital video is usually very long temporally. requiring large storage capacity. Therefore, users want to watch pre-summarized video before they watch a large long video. Especially in the field of sports video, they want to watch a highlight video. Consequently, highlight video is used that the viewers decide whether it is valuable for them to watch the video or not. This paper proposes how to create soccer video highlight using the structural features of the caption such as temporal and spatial features. Caption frame intervals and caption key frames are extracted by using those structural features. And then, highlight video is created by using scene relocation, logical indexing and highlight creation rule. Finally. retrieval and browsing of highlight and video segment is performed by selection of item on browser.

Visualization Techniques for Massive Source Code (대용량 소스코드 시각화기법 연구)

  • Seo, Dong-Su
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.4
    • /
    • pp.63-70
    • /
    • 2015
  • Program source code is a set of complex syntactic information which are expressed in text forms, and contains complex logical structures. Structural and logical complexity inside source code become barriers in applying visualization techniques shown in traditional big-data approaches when the volume of source code become over ten-thousand lines of code. This paper suggests a procedure for making visualization of structural characteristics in source code. For this purpose, this paper defines internal data structures as well as inter-procedural relationships among functions. The paper also suggests a means of outlining the structural characteristics of source code by visualizing the source codes with network forms The result of the research work can be used as a means of controling and understanding the massive volume of source code.

Facial Caricaturing System using Facial Features information (얼굴 특징정보를 이용한 캐리커처 생성 시스템)

  • 이옥경;박연출;오해석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.404-406
    • /
    • 2000
  • 캐리커처 생성 시스템은 입력된 인물 사진을 세그먼테이션을 통하여 특징(이목구비)을 추출하고, 추출된 특징정보를 이용하여 그와 유사한 특징정보를 가지는 캐리커처 이미지를 검색하여 매핑시키는 시스템이다. 캐리커처 생성 시스템에서는 얼굴의 대칭 구조를 이용하고 색상과 모양에 대한 정보를 이용하여 얼굴 각각의 특징(이목구비)을 캐리커처의 특징을 구분하는 특징정보로써 활용한다. 본 논문은 인물 사진을 세그멘테이션 처리하여 얻은 부분 영역 특징정보를 이용하여 그와 유사한 캐리커처를 자동으로 생성하는데 목적이 있다. 이 때 사용하는 대칭 구조는 씨앗 픽셀(seed pixel)을 추출한다. 특징정보는 색상의 경우 지역적인 색상정보는 이목구비를 더 뚜렷이 해주고, 전체적인 색상정보는 그 이미지의 피부색의 정보를 나타낸다. 모양의 경우 이목구비의 특징정보를 위해 불변모멘트가 주요하게 사용된다. 또한 데이터베이스는 얼굴의 세부사항(이목구비)에 대한 각각의 캐리커처로 구축되어 있고, 각 세부사항은 특징별 분류되어 있어야 한다. 이런 데이터베이스의 캐리커처와 추출된 얼굴 영상에서의 세부사항을 비교하여 유사도를 계산하고 이를 매핑하므로 개인의 특징을 가진 캐리커처를 자동으로 생성한다.

  • PDF