• Title/Summary/Keyword: 구조안전점검

Search Result 197, Processing Time 0.027 seconds

Development of Robotic Inspection System over Bridge Superstructure (교량 상판 하부 안전점검 로봇개발)

  • Nam Soon-Sung;Jang Jung-Whan;Yang Kyung-Taek
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.180-185
    • /
    • 2003
  • The increase of traffic over a bridge has been emerged as one of the most severe problems in view of bridge maintenance, since the load effect caused by the vehicle passage over the bridge has brought out a long-term damage to bridge structure, and it is nearly impossible to maintain operational serviceability of bridge to user's satisfactory level without any concern on bridge maintenance at the phase of completion. Moreover, bridge maintenance operation should be performed by regular inspection over the bridge to prevent structural malfunction or unexpected accidents front breaking out by monitoring on cracks or deformations during service. Therefore, technical breakthrough related to this uninterested field of bridge maintenance leading the public to the turning point of recognition is desperately needed. This study has the aim of development on automated inspection system to lower surface of bridge superstructures to replace the conventional system of bridge inspection with the naked eye, where the monitoring staff is directly on board to refractive or other type of maintenance .vehicles, with which it is expected that we can solve the problems essentially where the results of inspection are varied to change with subjective manlier from monitoring staff, increase stabilities in safety during the inspection, and make contribution to construct data base by providing objective and quantitative data and materials through image processing method over data captured by cameras. By this system it is also expected that objective estimation over the right time of maintenance and reinforcement work will lead enormous decrease in maintenance cost.

  • PDF

A Study on the Static Deformation Monitoring of the Offshore Structures by GPS Survey (GPS 측량에 의한 해안구조물의 정적변위측정에 관한 연구)

  • 이창경;김창우
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.369-378
    • /
    • 2000
  • The objective of this study is to measures deformation of the structures for stability checks by GPS survey. In this study, 2 points on south side dike of Keum River were measured by 4 sets of GPS(SR9500, Leica) every 4 months for a year, and 3-dimensional displacements of the points were acquired. In order to seek more reliable deformation measurement methods for the offshore structure by GPS, the accuracy of GPS survey with various control points configuration and checking system for detecting unrealistic measurements are also discussed.

  • PDF

Semantic Segmentation for Multiple Concrete Damage Based on Hierarchical Learning (계층적 학습 기반 다중 콘크리트 손상에 대한 의미론적 분할)

  • Shim, Seungbo;Min, Jiyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.175-181
    • /
    • 2022
  • The condition of infrastructure deteriorates as the service life increases. Since most infrastructure in South Korea were intensively built during the period of economic growth, the proportion of outdated infrastructure is rapidly increasing now. Aging of such infrastructure can lead to safety accidents and even human casualties. To prevent these issues in advance, periodic and accurate inspection is essential. For this reason, the need for research to detect various types of damage using computer vision and deep learning is increasingly required in the field of remotely controlled or autonomous inspection. To this end, this study proposed a neural network structure that can detect concrete damage by classifying it into three types. In particular, the proposed neural network can detect them more accurately through a hierarchical learning technique. This neural network was trained with 2,026 damage images and tested with 508 damage images. As a result, we completed an algorithm with average mean intersection over union of 67.04% and F1 score of 52.65%. It is expected that the proposed damage detection algorithm could apply to accurate facility condition diagnosis in the near future.

A Study on the Method for Life-Cycle Management of River Facilities Using Existing Maintenance Management System (기존 유지관리 시스템을 활용한 하천시설물 생애주기 관리방안 연구)

  • Yoon, Kwang Seok;Kim, Sooyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.484-484
    • /
    • 2017
  • 최근 홍수 시 제방붕괴로 인한 인명 및 재산피해가 증가되고 있어 노후화된 제방 시설물의 안전관리 체계에 대한 필요성으로 국토교통부에서는 국가하천유지보수 종합체계 시스템을 개발하였으나 아직 시범단계로 실무에 적용하여 활용하고 있지 못한 실정이다. 효율적인 국가하천시설에 대한 유지관리를 위한 자료D/B화 및 관리대장, 점검기법, 보수보기법 등을 제시하고 있으나 국가하천에 국한되어 있어 전국단위 하천시설물의 전주기에 대한 통합적인 관리는 반영되어 있지 못하다. 하천시설물 생애주기관리를 위해서는 모든 하천시설물에 대한 이력관리가 필요하나 현재는 시설물의 안전관리에 관한 특별법(시특법) 상의 1, 2종 시설물에 대해서만 시설물정보관리종합시스템(FMS)에서 이력관리를 수행하고 있는 실정이다. 따라서 본 연구에서는 국가하천 및 지방하천에 대한 하천시설물의 생애주기 관리방안을 도출하기 위해 기존의 시스템의 기능 및 구조를 분석하였으며 이를 통해 하천시설물 생애주기 관리방안을 제시하였다.

  • PDF

Study on Discovery of Vulnerable Factors in Road Tunnels through AHP Analysis (AHP분석을 통한 도로터널의 취약요소 발굴에 관한 연구)

  • Seong-Kyu Yun;Gichun Kang
    • Land and Housing Review
    • /
    • v.15 no.3
    • /
    • pp.177-188
    • /
    • 2024
  • This study aims to identify vulnerability factors through comprehensive safety diagnosis and to seek improvement measures for the safety and maintenance of facilities. In this study, the results of road tunnel inspections and diagnostics were converted into a database (DB). Using this data, we explored to identify vulnerable elements (NATM, ASSM) based on structural types and to develop efficient improvement measures. In this study, we analyzed 76 detailed safety diagnosis reports covering 45 different types of road tunnel facilities. In the detailed guidelines for comprehensive safety diagnosis, the database (DB) items for identifying vulnerable factors were selected by categorizing the basic information, such as the year of completion and damage items. In addition, AHP analysis was conducted separately through experts in related fields to analyze the correlation between damages. As a result, the primary vulnerability factors for NATM and ASSM were identified as cracks, leaks, insufficient lining thickness, and joint rear. ASSM was identified as relatively more susceptible to network cracks and material separation compared to NATM. In contrast, flaking and rebar exposure were interpreted as more significant vulnerabilities for NATM than for ASSM. In addition, the correlation between elements in NATM was found to be low, whereas in ASSM, the correlation between elements was high, indicating a more organic relationship.

A Study on Generation Quality Comparison of Concrete Damage Image Using Stable Diffusion Base Models (Stable diffusion의 기저 모델에 따른 콘크리트 손상 영상의 생성 품질 비교 연구)

  • Seung-Bo Shim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.55-61
    • /
    • 2024
  • Recently, the number of aging concrete structures is steadily increasing. This is because many of these structures are reaching their expected lifespan. Such structures require accurate inspections and persistent maintenance. Otherwise, their original functions and performance may degrade, potentially leading to safety accidents. Therefore, research on objective inspection technologies using deep learning and computer vision is actively being conducted. High-resolution images can accurately observe not only micro cracks but also spalling and exposed rebar, and deep learning enables automated detection. High detection performance in deep learning is only guaranteed with diverse and numerous training datasets. However, surface damage to concrete is not commonly captured in images, resulting in a lack of training data. To overcome this limitation, this study proposed a method for generating concrete surface damage images, including cracks, spalling, and exposed rebar, using stable diffusion. This method synthesizes new damage images by paired text and image data. For this purpose, a training dataset of 678 images was secured, and fine-tuning was performed through low-rank adaptation. The quality of the generated images was compared according to three base models of stable diffusion. As a result, a method to synthesize the most diverse and high-quality concrete damage images was developed. This research is expected to address the issue of data scarcity and contribute to improving the accuracy of deep learning-based damage detection algorithms in the future.

An Improvement of the State Assessment for Concrete Floor Slab by Damage Type Breakdown (손상유형 분할에 의한 콘크리트 바닥판의 상태평가 개선)

  • Hwang, Jin Ha;An, Seoung Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • The direct inspection of the outward aspects by field engineers is the important and critical part for structural safety assessment according to the related reports. This study presents an improved method of the state assessment for concrete floor slab by separating and evaluating the individual damage types. First, the various types of damage symptoms are separated, which have been included and dealt in a group. Secondly, they are weighted and scored independently based on the present guide and references. Overall procedures other than the above are retained as same as possible to avoid the confusion. The proposed method is applied and tested to a performed assessment project for a bridge for validation. The result shows that it is reasonable and applicable in respect that it is able to make up for the controversial points of the present guide revealed in practices. Careful check of excessively deteriorated parts in addition to the reasonable assessment of system by this method grants the structural repair and reinforcement propriety and economy, and assures of more safety. Twofold appraisal of this approach expands the applicable areas of value engineering to the structural maintenance.

The Utility of Phased Array Ultrasonic Testing(PAUT) for Corrosion Evaluation of Water Supply Steel Pipes (상수도 강관의 부식 평가에 대한 위상배열초음파(PAUT)의 활용)

  • Sang Hyeok Son;Chang Gun Shin;Jea Yeon Jeong;Jong Sik Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.490-490
    • /
    • 2023
  • 위상배열초음파검사(PAUT)는 기존 초음파검사에서 획득할 수 있었던 A-scan의 결과와 달리, 관로 내부로 진입하지 않고도 부식에 의한 강관 손상 정도를 정량적인 시각적 데이터로 파악할 수 있는 검사 기술이다. 관내부 직접조사가 가능한 상수도 강관을 대상으로 직접조사와 PAUT를 비교한 결과, PAUT는 높은 정확도와 신뢰성을 보여주었다. 또한, 강관 내부의 부식검사에서는 PAUT를 적용함으로써 관체의 부식 면적, 부식 최대 깊이, 부식 위치를 넓은 범위에서 신뢰성 높은 검사 및 결과 도출이 가능하였다. 이러한 결과는 PAUT 기술이 강재 구조물의 다양한 부식 문제를 신속하게 파악하고 해결하는 데 기여할 수 있음을 의미한다. 따라서, 본 검사 기법은 상수도 관로의 강재 진단 및 점검에 있어 높은 신뢰성 및 효율성을 보여 주는 진단기법으로써 다양한 강재 시설물의 평가에 활용성이 클 것으로 판단된다. 이에 따라 PAUT는 상수도 시설물뿐만 아니라 다양한 시설물에서도 높은 활용 가능성을 가질 것으로 예상된다.

  • PDF

Understanding Facility Management on Tunnel through Text Mining of Precision Safety Diagnosis Data (터널시설물 점검진단 데이터의 텍스트마이닝 분석을 통한 유형별·지역별 중점 유지관리요소의 이해)

  • Seo, Jeong-eun;Oh, Jintak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.85-92
    • /
    • 2021
  • The purpose of this paper is to understand the key factors for efficient maintenance of rapidly aging facilities. Therefore, the safety inspection/diagnosis reports accumulated in the unstructured data were collected and preprocessed. Then, the analysis was performed using a text mining analysis method. The derived vulnerabilities of tunnel facilities can be used as elements of inspections that take into account the characteristics of individual facilities during regular inspections and daily inspections in the short term. In addition, if detailed specification information and other inspection results(safety, durability, and ease of use) are used for analysis, it provides a stepping stone for supporting preemptive maintenance decision-making in the long term.

A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors (이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구)

  • Seo, Seunghwan;Ohn, Syng-Yup;Kim, Dong-Hyun;Kwak, Kiseok;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2020
  • Since cracks in concrete structures expedite corrosion of reinforced concrete over a long period of time, regular on-site inspections are essential to ensure structural usability and prevent degradation. Most of the safety inspections of facilities rely on visual inspection with naked eye, so cost and time consuming are severe, and the reliability of results differs depending on the inspector. In this study, a portable measuring device that can be used for safety diagnosis and maintenance was developed as a device that measures the width and length of concrete cracks through image analysis of cracks photographed with a camera. This device captures the cracks found within a close distance (3 m), and accurately calculates the unit pixel size by laser distance measurement, and automatically calculates the crack length and width with the image processing algorithm developed in this study. In measurement results using the crack image applied to the experiment, the measurement of the length of a 0.3 mm crack within a distance of 3 m was possible with a range of about 10% error. The crack width showed a tendency to be overestimated by detecting surrounding pixels due to vibration and blurring effect during the binarization process, but it could be effectively corrected by applying the crack width reduction function.