• Title/Summary/Keyword: 구조성능실험

Search Result 5,141, Processing Time 0.034 seconds

Performance Evaluation of Chain-code Sequence and Structure-code Sequence for On-line Handwritten Chinese Character Recognition (온라인 필기 한자인식을 위한 체인코드열과 구조코드열의 성능평가)

  • Kim, Hyung-Tai;Ha, Jin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.402-407
    • /
    • 2006
  • 본 논문에서는 보다 실용적인 온라인 한자인식기 개발을 위하여 한자 검정 능력 1급 쓰기 수준을 모두 포함하는 한자 필기 데이터로부터 16방향의 체인코드열과 부분획의 구조를 반영하는 구조코드열을 만들어 성능평가를 하였다. 인식 방법으로는 DP 매칭 방법과 HMM을 사용하여 2,362 종류의 한자에 대해 인식 실험을 하였다. 그 결과 체인코드열을 사용한 DP 매칭 방법에 의한 결과가 96.54%로 가장 높은 인식률을 보였으며, 구조코드열을 사용하여 HMM에 의한 인식실험 결과가 95.65%로 그 뒤를 이었다. 인식 속도면에서는 체인코드 보다 코드열의 길이가 짧은 구조코드열을 사용한 방법이 상대적으로 유리했고, 클래스 당 1개의 모델을 사용한 HMM에 의한 방법이 클래스 당 복수개의 모델을 사용한 DP 매칭 방법에 비해 모델의 개수가 훨씬 적기 때문에 속도 면에서 월등히 유리해 더 효율적인 인식 성능을 보인다는 결론을 내릴 수 있었다.

  • PDF

Development of Steel Pipe Splice Sleeve for High Strength Reinforcing Bar(SD500) and Estimation of its Structural Performance under Monotonic Loading (SD500 고강도 철근용 강관 스플라이스 슬리브 철근이음 개발 및 구조성능 평가)

  • Lee, Sang-Ho;Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.169-180
    • /
    • 2007
  • Among several splicing system of reinforcing bar, the grout-filled splice sleeve system has been applied widely. However, as the splice sleeve for high strength rebar as SD500 is not yet made in korea, the development of splice sleeve for high strength reinforcing bar are required as soon as possible. It is the purpose of this study to develop the steel pipe sleeve for high strength rebar as SD500 and estimate its structural performance by monotonic loading test. The experimental variables adopted in this study are the development length of rebars, types of sleeve etc. The results of this study showed that the developed steel pipe splice sleeve system for high strength reinforcing bar as SD500 retained the structural performance required in domestic, ACI and AIJ criteria. And it is considered that the study result presented in this paper can be helpful in developing reasonable design method of steel pipe splice sleeve system for high strength reinforcing bar as SD500.

Developments of Advanced Connection Type for Improvements of Mixed Structures (II) (혼합구조의 성능 향상을 위한 개선된 접합부의 개발 (II): 개선된 접합방식의 성능확인을 위한 모형실험 및 해석)

  • Yun, Ik Jung;Lho, Byeong Cheol;Kim, Moon Kyum;Cho, Sung Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.207-214
    • /
    • 2008
  • This study presents a way to validate the quality level of the proposed connection type and verify the experimental test, and performs a 3D nonlinear analysis corresponding to the experimental test. Two mixed-structure beams were cast and tested under a four-point static loading. Force-displacement relation, force-strain relation, force-opening width, and failure mode were observed from comparing the numerical results of the adopted FE model. Nonlinear analysis of mixed structures was carried out by utilizing the contact elements of a general purpose structural analysis computer program (ABAQUS). The results of numerical and experimental simulation show that the proposed L-shaped connection has greater stiffness under flexural loading and better structural performance with regard to the connection.

Comparative Seismic Evaluation of Structures by Energy Absorption Efficiency (에너지 흡수효율에 의한 구조물간 내진 성능 비교)

  • 김장훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.37-43
    • /
    • 2001
  • The energy concept has been extended to compare the hysteretic performance between various structural systems. As a result, the energy absorption efficiency is defined as the cumulative energy absorption capacity of a structural system normalized by that of the elasto-perfectly plastic system as a benchmark for comparisons. For this, the construction of energy curves from the experimental results obtained by cyclic loading tests is required. Using the proposed procedure, structures differing from each other in geometry, material and construction can be relatively and objectively compared for seismic performance. Also the beauty of this method is in its irrelevance to the structural failure mode. The proposed procedure was validated by application to the experimental results of two different specimens.

  • PDF

Performance Evaluation of Seismic Isolation using Ball Bearing (볼 베이링을 이용한 면진장치의 성능평가)

  • Chang, Chun-Ho;Jang, Kwang-Seok;Lee, Young-Seok;Yeo, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.71-74
    • /
    • 2011
  • 최근 국제적으로 지진 발생 규모가 증대하고 있으며, 우리나라를 비롯한 많은 나라에서 구조물 및 주요 시설물에 대한 내진설계에 관심이 증대되고 있다. 지진방재는 건물자체의 안전성뿐만 아니라 내부설비 및 소장품에 대한 안전성까지 종합적으로 검토되어야 하며 이를 위한 대책이 필요한 실정이다. 본 연구의 주요목적은 예측 불가한 자연재해인 지진에 대해 일반적인 면진성능을 갖는 기초격리장치로서의 기능을 충실히 수행할 수 있는지를 확인하기 위하여 면진장치를 사용한 구조물의 면진효과를 검증하는 것이다. 또한 설계된 스프링의 탄성계수에 따른 실제 지진 시 응답의 차이를 알아보기 위하여 공진실험 및 진동대 실험을 실시하여 면진테이블 시스템의 면진성능을 평가하였다. 진동대 실험은 미국 "NEBS Requirements"에서 규정하는 요구응답스펙트럼에 상응하는 임의 지진파를 적용하였고 각각 x축과 z축 가진 후, x-y-z 축을 동시에 가진하여 수행하였다. 시험응답스펙트럼(Test Response Spectrum)은 요구응답스펙트럼(RRS)에 포락하도록 시험하여 최대가속도는 x축 방향 가진 시 90%의 감쇠효과가 나타났으며, 3축 방향 가진 시 x축 방향은 58%, y축 방향은 31%의 감쇠효과가 나타났다. 최대상대변위는 설계스트로크 140mm에 대하여 최대 85.54mm의 변위가 발생하여 안정적인 거동을 나타내었다. 본 연구에서 제안한 면진테이블 시스템은 중요 첨단장비 및 문화재 등의 전도 및 파괴를 방지하는 데 효과적일 것으로 판단된다.

  • PDF

The Structural Performance Evaluation of Steel Pipe Pile Cap with Perfobond Rib Shear Connector (유공강판 전단연결재로 보강된 강관말뚝머리의 구조 성능 평가)

  • Koo, Hyun-Bon;Kim, Young-Ho;Kang, Jae-Yoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.843-851
    • /
    • 2008
  • The conventional pile cap reinforcement systems regulated in the design specifications have some restrictions in design and construction such as requirement of shear key, disposition of reinforcing bars and insurance of anchoring length of reinforcements. This study suggests a new type of steel pipe pile cap system with perforated flat bar shear connector as an alternative to the conventional pile cap system for the improvement in structural performance and simplification of construction. And, experimental results of push-out and bending behavior are scribed for the evaluation of structural performance of the new pile cap system and it was compared to the structural behavior of conventional pile cap system.

Identifying Dynamic Characteristics of Structures to Estimate the Performance of a Smart Wireless MA System (SWMAS의 성능 검증을 위한 구조물의 동특성 분석)

  • Heo, Gwang-Hee;Lee, Woo-Sang;Shin, Jae-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.227-234
    • /
    • 2005
  • In this paper, a smart wireless MEMS-based accelerometer(MA) system has been designed and experimented for smart monitoring system of civil structures. Various performance and experimental tests have been carried out to evaluate whether this system is suitable for monitoring system of civil structures. First, we examined its sensitivity, resolution, and noise, specifically to evaluate the performance of the smart wireless MA system. The results of experiments enabled us to estimate performance of the MA in SWMAS in comparison to the value of data sheet from MA. Second, characteristics of model structure were analyzed by the ambient vibration test based on the NExT combined with ERA. Finally, this analysis was compared to the one that was made by FE results, and the comparison proved that a smart wireless MA system was fitted in smart monitoring system effectively.

Flexural Experiments on Reinforced Concrete Beams Strengthened with ECC and High Strength Rebar (ECC와 고장력 철근으로 보강된 철근콘크리트 보의 휨 실험)

  • Cho, Hyun-Woo;Bang, Jin-Wook;Han, Byung-Chan;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.503-509
    • /
    • 2011
  • ECC is a micro-mechanically designed cementitious composite which exhibits tightly controlled crack width and strain hardening behavior in uniaxial tension while using a moderate amount of reinforcing fiber, typically less than 2% fiber volume fraction. Recently, a variety of applications of this material ranging from repair and retrofit of structures, cast-in-place structures, to precast structural elements requiring high ductility are developed. In the present study, a retrofitting method using ECC reinforced with high strength rebar was proposed to enhance load-carrying capacity and crack control performance of deteriorated reinforced concrete (RC) beams. Six beam specimens were designed and tested under a four-point loading setup. The flexural test revealed that load-carrying capacity and crack control performance were significantly enhanced by the use of ECC and high strength rebar. This result will be useful for practical field applications of the proposed retrofitting method.

Experiments on Flexural Performance of Composite Members Strengthened by External Steel Plates (외부 강재 보강으로 구성한 합성 부재의 휨 성능에 대한 실험)

  • Hwang, Byung-Hun;Shin, Jin-Won;Jeon, Jae-Ho;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.143-150
    • /
    • 2022
  • This paper presents an experimental study on the flexural performance of concrete members strengthened with external steel plates for the purpose of improving seismic performance. In order to strengthen the structure, a strengthening method was applied that wraps the walls and columns with steel members. The partial section of the wall with the longest span in the structure was manufactured in real size and the strengthening effect was confirmed by performing a static load test. As a result of the experiment, it was confirmed that the strengthened section exhibited sufficient flexural performance satisfied to the seismic requirements, but the behavior until failure was not obtained because of actuator capacity. It was confirmed that the strengthened member resists the out-of-plane moment with a composite behavior. It was verified that the stiffness and load carrying capacity of the strengthened member were improved compared to the non-strengthened member by displacement and strain measurements.

Structural Performance of One-way Void Plywood Slab System with form work Pane (거푸집 패널이 부착된 1방향 중공슬래브의 구조 성능)

  • Hur, Moo-Won;Chae, Kyoung-Hun;Hwang, Kyu-Seok;Yoon, Sung-Ho;Park, Tae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.7-15
    • /
    • 2021
  • In this study, we developed Void Plywood Slab (VPS) that improved the shape of existing hollow materials. Its performance was evaluated through one-way flexural and one-way shear tests using the developed VPS. As a result of the one-way flexural performance tests of VPS, the yield load value for FPS series(longitudinal direction specimens with hollow materials) was approximately 97.5% compared to FPS-00(without hollow materials) specimen. The tests showed that the yield load was not much different. In addition, FNS series(transverse direction specimens with hollow materials) also represented about 97% of FPS-00 specimen. The one-way flexural performance was shown to have little impact from void materials. Therefore, it is confirmed that the presented system is applicable to the VPS to the slab design. The results of the one-way shear performance tests of VPS showed that it was about 92% compared to the SS-00(without hollow materials) specimen. These results were somewhat insufficient for the SS-00 specimen. Shear strength equation is expressed as the sum of shear force by concrete and shear force by reinforcement. However, in the case of void slab, it is believed that the concrete section has been deleted by the void material. However, the strength of the structure applied to the shear design, as with the flexural design, is also applied to the design based on the yield load value.