• Title/Summary/Keyword: 구조벽체

Search Result 585, Processing Time 0.027 seconds

An Experimental Study on Strength and Ductility of Masonry Buildings Retrofitted by Metal Connectors (조적조 건물의 연결철물보강에 따른 내력 및 연성에 관한 실험적 연구)

  • Park, Byung-Tae;Kwon, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.113-121
    • /
    • 2015
  • Building using masonry accounts for most of the smaller houses in Korea but due to brittle behavior and low ductility the frequency of usage has decreased in recent years. Despite this, this form of building has been gaining attention overseas for its low cost in construction and environment-friendliness of the materials. As such, many studies are being conducted to resolve the disadvantages in structure. This study produced an specimen for masonry-filled wall and the intersection to confirm the difference in structural movement depends on the existence or lack of expansion joint and verified the reinforcement effect from inserting a connecting steel item (steel plate, stainless steel twist bar). The experiment results show that the specimen with a steel plate inserted saw an increase in durability and an improvement in the strength of the specimens, while the specimen that had stainless steel twists bar inserted saw an increase in ductility that did not cause brittle failure, indicating that the reinforcement effects of inserting a connecting steel item are effective.

A Study on the Performance of Mechanical Pressurizing Equipment(MPE) for Improving Bond Strength of Repair Materials for Concrete Box Structures (콘크리트 박스 구조물용 보수재의 부착강도 향상을 위한 기계식 가압장비(MPE) 성능에 관한 연구)

  • Yu, Hyeong-Sik;Jung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.477-483
    • /
    • 2020
  • The rehabilitation methods used in existing concrete box structures rely on the method of attaching the repair material to the section of the structure with a spray equipment. In the case of ceiling or wall parts, the adhesion force to the repair material may be reduced by the gravity and dead load after construction. In subway structures, vibration causes a problem that reduces the initial adhesion. Supplementary measures are needed as the quality of repair varies depending on the worker's proficiency and construction environment. In this study, mechanical pressurization equipment was developed that can apply a certain pressure after construction of a repairwork to solve problems such as reduction of adhesion of repair materials by gravity and variation of repair quality by labor work. To find out the effect of the pressurized equipment, a chamber similar to the field conditions was constructed to measure the attachment strength different from the pressurized condition, the section, and the environmental conditions. The pressurization differed from the other parts, but the adhesion strength of up to 70% was increased.

Fundamental Period Formulas for Concrete Shear Wall Buildings (철근 콘크리트 전단벽 구조물의 고유주기)

  • Kang, Sung-Hun;Hong, Sung-Gul;Park, Hong-Gun;Chung, Lan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.29-38
    • /
    • 2011
  • A new formula is proposed for the fundamental period of high-rise residential concrete shear-wall (SW) buildings. This formula, developed on the basis of dynamics with the recorded fundamental period during the recent earthquakes, can consider the wall stiffness with respect to any direction. To verify the proposed formula, the fundamental period of 10 sample buildings, measured during construction, is compared with the predicted fundamental period. Furthermore, the empirical formulas presented in the building codes KBC 2009 and ASCE 7-10, are also compared with the proposed formula to show a rationality of the proposed formula. The comparison results show that the proposed formula not only can rationally consider the characteristics of each shear-wall, but that it also accurately predicts the fundamental period of the buildings.

Progressive Collapse Analysis of Reinforced Concrete Core Structure Subjected to Internal Blast Loading (내부 폭발하중을 받는 철근콘크리트 코어의 연쇄붕괴 해석)

  • Kim, Han-Soo;Ahn, Jae-Gyun;Ahn, Hyo-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.715-722
    • /
    • 2014
  • In this paper, internal blast effect of reinforced concrete core structure were investigated using Ansys Autodyn, which is a specialized hydrocode for the analysis of explosion and impact. It is expected that internal blast case can give additional damage to the structure because it causes rebound of blast loads. Therefore, in this paper, the hazard of internal blast effect is demonstrated using UFC 3-340-02 criteria. In addition, analysis result of Autodyn, experimental result regarding rebound of blast load, and example of UFC 340-02 are compared to verify that Autodyn can analyze internal blast effect properly. Furthermore, progressive collapse mechanism of core structure which is one of the most important parts in high rise buildings is also analyzed using Autodyn. When internal blasts are loaded to core structure, the core structure is mostly damaged on its corner and front part of core wall from explosives. Therefore, if the damaged parts of core wall are demolished, progressive collapse of the core structure can be initiated.

The Lateral Earth Pressure Distribution of the Earth Retaining Structure Installed in Colluvial Soil (붕적토에 설치된 흙막이구조물의 측방토압분포)

  • Hong, Won-Pyo;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.433-437
    • /
    • 2008
  • It's essential to build an earth retaining structure at the beginning and end point of a tunnel constructed in a colluvium area. A large scale of colluvial soil may cause a problem to the stability of the excavation ground. An excavation in colluvium has different behavior characteristics from those in a sandy soil due to unstable elements and needs counter measures for it. There are few systematic research efforts on the behavior characteristics of an earth retaining structure installed in colluvial soil. Thus this study set out to collect measuring data from an excavation site at the tunnel pit mouth in colluvium and set quantitative criteria for the safety of an earth retaining structure. After comparing and analyzing the theoretical and empirical earth pressure from the measuring data, the lateral earth pressure distribution acted on the earth retaining wall was suggested.

An Analysis on the Structural Deterioration Properties of Timeworn Masonry Buildings in Metropolitan Area (대도시 지역의 노후 조적조 건축물의 구조 성능 열화 특성 분석)

  • Kwon, Ki-Hyuk;Lee, Kyoung-Yong;Yang, Hee-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.181-189
    • /
    • 2003
  • Because of the gravitation of population toward large cities, a number of masonry buildings have been constructed since 1960. They have been rapidly deteriorated as time passed by. Therefore the purpose of this paper is to present basic data on timeworn masonry buildings which have been managed by metropolitan government and to analyse their deterioration factors. And then, the results of this paper can be used to establish the policy of managing timeworn masonry buildings. According to this study, the crack of masonry wall is the most effective deterioration factor and timeworn masonry buildings have a problem with foundation. The structure grade have an interrelation with occupancy type more than building age. Also, the longer building age becomes, the sooner deterioration speeds. A timeworn masonry building is in urgent need of reinforcement on a thirty-year period of building age.

Finite Element Analysis of Silo Type Underground Opening for LILW Disposal Facility (사일로 구조형식 중저준위 방폐물 처분동굴의 유한요소 해석)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.339-345
    • /
    • 2021
  • Finite element analysis of the silo type underground opening for low- and intermediate-level radioactive waste (LILW) disposal facilities in Korea is presented in this study. The silo wall is circular and the roof is made up of domes. The silo wall is 25 meters in diameter, 35 meters in height, and the dome is 30 meters in diameter and 17.4 meters in height, and it is located at -80 meters to -130 meters at sea level. Although six silos have been constructed in the first stage and are in operation, only one silo was considered in this study. The two-dimensional axial symmetric finite element model, as well as the three-dimensional finite element model were made using the computer program SMAP-3D. Generalized Hoek and Brown Model was used for the numerical analyses. The finite element analysis of the silo type underground opening was carried out under various lateral pressure coefficients (defined as ratio of average horizontal to vertical in-situ stress), and the numerical results of these analyses were examined.

Evaluation on the Fire Resistance Performance for High-Rise Modular Walls (중·고층형 모듈러 벽체의 내화성능 평가)

  • Yang, Seung-Cho;Lee, Jae-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • The use of modular buildings is increasing because of various advantages of modular buildings. But there are limits to apply modular buildings to medium-rise buildings because the building law provides only the specification criteria of the modular building with respect to the 1 hour fire resistance performance. This study was conducted to investigate 2 hours fire resistance performance of load bearing walls with steel studs in modular buildings by KS F 2257-1 and KS F 2257-4. After full scale tests, load bearing walls ensuring two hours fire resistance performance consist of at least 2 layers of fire resistance plaster boards of 19mm thickness or 3 layer of fire resistance plaster boards of thickness.

Seismic Capacity according to Structural System of High-rise Apartment (고층 아파트 구조시스템에 따른 내진성능 분석)

  • Lee, Minhee;Cho, So-Hoon;Kim, Jong-Ho;Kim, Hyung-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.149-154
    • /
    • 2019
  • The structural system of domestic high-rise apartments can be divided into two parts; the core wall system, which is composed of walls concentrated in the center and the shear wall system, which comprises a great number of walls distributed in the plan. In order to analyze the lateral behavior of each system, buildings with typical domestic high-rise apartment plans were selected and nonlinear static analysis was performed to investigate the their collapse mechanism. From the force-displacement relation derived from nonlinear static analysis, response modification factor was evaluated by calculating the overstrengh and ductility factor, which are important in the seismic response. The ductility of core wall system is small, but as it is governed by wind load, its overstrength is greatly estimated, and its response modification factor is calculated by the overstrengh factor. Due to a large number of walls, shear wall system has a large ductility, making the response modification factor considerably large.

Deep Learning-based Pixel-level Concrete Wall Crack Detection Method (딥러닝 기반 픽셀 단위 콘크리트 벽체 균열 검출 방법)

  • Kang, Kyung-Su;Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.197-207
    • /
    • 2023
  • Concrete is a widely used material due to its excellent compressive strength and durability. However, depending on the surrounding environment and the characteristics of the materials used in the construction, various defects may occur, such as cracks on the surface and subsidence of the structure. The detects on the surface of the concrete structure occur after completion or over time. Neglecting these cracks may lead to severe structural damage, necessitating regular safety inspections. Traditional visual inspections of concrete walls are labor-intensive and expensive. This research presents a deep learning-based semantic segmentation model designed to detect cracks in concrete walls. The model addresses surface defects that arise from aging, and an image augmentation technique is employed to enhance feature extraction and generalization performance. A dataset for semantic segmentation was created by combining publicly available and self-generated datasets, and notable semantic segmentation models were evaluated and tested. The model, specifically trained for concrete wall fracture detection, achieved an extraction performance of 81.4%. Moreover, a 3% performance improvement was observed when applying the developed augmentation technique.