• Title/Summary/Keyword: 구조물 건전성

Search Result 403, Processing Time 0.033 seconds

Load Recovery Using D-Optimal Sensor Placement and Full-Field Expansion Method (D-최적 실험 설계 기반 최적 센서 배치 및 모델 확장 기법을 이용한 하중 추정)

  • Seong-Ju Byun;Seung-Jae Lee;Seung-Hwan Boo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.115-124
    • /
    • 2024
  • To detect and prevent structural damage caused by various loads on marine structures and ships, structural health monitoring procedure is essential. Estimating loads acting on the structures which are measured by sensors that are mounted properly are crucial for structural health monitoring. However, attaching an excessive number of sensors to the structure without consideration can be inefficient due to the high costs involved and the potential for inducing structural instability. In this study, we introduce a method to determine the optimal number of sensors and their optimized locations for strain measurement sensors, allowing for accurate load estimation throughout the structure using model expansion method. To estimate the loads exerted on the entire structure with minimal sensors, we construct a strain-load interpolation matrix using the strain mode shapes of the finite element (FE) model and select the optimal sensor locations by applying D-Optimal Design and the row exchange algorithm. Finally, we estimate the loads exerted on the entire structure using the model expansion method. To validate the proposed method, we compare the results obtained by applying the optimal sensor placement and model expansion method to an FE model subjected to arbitrary loads with the loads exerted on the entire FE model, demonstrating efficiency and accuracy.

Low Temperature Structural Tests of a Composite Wing with Room Temperature-Curing Adhesive Bond (상온접합 본딩이 있는 복합재 날개의 저온 구조시험)

  • Ha, Jae Seok;Park, Chan Yik;Lee, Kee Bhum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.928-935
    • /
    • 2015
  • This paper presents low temperature structural tests of a UAV wing which has room temperature-curing adhesive bond. The wing structure is made of carbon fiber reinforced composites, and the skins are bonded to the inner structures (such as ribs and spars) using room temperature-curing adhesive bond. Also, to verify damage tolerance design of the wing structure, barely visible impact damages are intentionally created in the critical areas. The attachment fittings of the wing are fixed in a specially designed chamber which can simulate the low temperature environments of the operating altitudes. The test load is applied by hydraulic actuators which are placed outside the chamber. The structural tests consist of strain survey tests and a durability test for 1-life fatigue load spectrum. During the tests, strains of major parts are measured by strain gauges and FBG sensors. The change of the initial impact damages is also monitored using piezoelectric sensors. The 1-life damage tolerance of the composite structure is verified by the structural tests under the simulated environments.

Experimental Analysis on Vibration of Composite Plate by Using FBG Sensor System (브래그 격자 센서 시스템을 이용한 복합재 평판 진동의 실험적 해석)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.436-441
    • /
    • 2009
  • A fiber optic sensor is prospective to be applied to structural health monitoring. Especially, a fiber Bragg grating(FBG) sensor is one of the most popular sensors for the structural health monitoring. The FBG sensor has several demodulation systems for tracking the shift of the Bragg wavelength. The dynamic bandwidth is dependent on the demodulation system. In this paper, the sensing mechanism is that the slope of the optical spectrum of FBG could be used as its sensitivity when the tunable laser shot the monochromatic laser wavelength at the highest slope point. In this technique, the high sensitivity is guaranteed even though the sensing range is limited. In an example of the application, the composite plate embedding a FBG sensor was manufactured by using an autoclave method and the above sensing mechanism was applied to the composite plate. Firstly, the natural frequencies of the plate were successfully measured by the FBG sensor during the impact hammer test. Secondly, a high-power speaker was used to force the plate to be vibrated at the specific frequency that was one of the natural frequencies. During the shaking, the FBG sensor measures the dynamic characteristics and ESPI was also used to measure the mode shape. From the two dynamic tests, the availability of the FBG sensor system and the ESPI was proven as a technique for measuring the dynamic characteristics of composite structure.

The Effect of Negative Pressure Phase in Blast Load Profile on Blast Wall of Offshore Plant Topside (해양플랜트 Topside 방화벽에 폭발압의 부압구간이 미치는 영향)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, Yong-Hee;Choi, Jae-Woong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.281-288
    • /
    • 2014
  • As a gas explosion is the most fatal accident in shipbuilding and offshore plant industries, all safety critical elements on the topside of offshore platforms should retain their integrity against blast pressure. Even though many efforts have been devoted to develop blast-resistant design methods in the offshore engineering field, there still remain several issues needed to be carefully investigated. From a procedure for calculation of explosion design pressure, impulse of a design pressure model having completely positive side only is determined by the absolute area of each obtained transient pressure response through the CFD analysis. The negative pressure phase in a general gas explosion, however, is often quite considerable unlike gaseous detonation or TNT explosion. The main objective of this study is to thoroughly examine the effect of the negative pressure phase on structural behavior. A blast wall for specific FPSO topside is selected to analyze structural response under the blast pressure. Because the blast wall is considered an essential structure for blast-resistant design. Pressure time history data were obtained by explosion simulations using FLACS, and the nonlinear transient finite element analyses were performed using LS-DYNA.

Analysis of electrical resistivity characteristics according to the mixing ratio of coarse fillings in artificial rock joint (인공 암반절리의 조립토 충진물 혼합비에 따른 전기비저항 특성 분석)

  • Haeju Do;Tae-Min Oh;Hangbok Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.141-155
    • /
    • 2023
  • Monitoring technology based on electrical resistivity is widely used for non-destructive data collection and health analysis of underground structures and tunnels. Vulnerable sections such as fault zone generates many problems during construction of the tunnel. These problems cause displacement and stress changes of the ground. Therefore, it is necessary to predict the state of the fault zone section to ensure the mechanical stability of the underground structure. Monitoring the size of joints and the porosity of the fillings is essential for rocks. Previous studies have not considered the variety of fillings in rock joints. In this study, electrical resistivity tests were conducted according to the particle mixing state of the sandy fillings. When the size of fillings is decreased at the constant porosity, the electrical resistivity tends to increase. The results of this study are expected to be useful as basic electrical resistivity data for predicting the ground conditions and evaluation of the ground behavior that is containing sandy fillings in the rock joint for tunnels.

Source Location on Full-Scale Wind Turbine Blade Using Acoustic Emission Energy Based Signal Mapping Method (음향방출 에너지 기반 신호 맵핑 기법을 이용한 실물 풍력 블레이드 손상 검출)

  • Han, Byeong-Hee;Yoon, Dong-Jin;Huh, Yong-Hak;Lee, Young-Shin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.443-451
    • /
    • 2013
  • Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. In this study, the activities of AE signals generated from external artificial sources was evaluated and located by new developed signal mapping source location method and this test is conducted by 750 kW full-scale blade. And a new source location method was applied to assess the damage in the wind turbine blade during step-by-step static load test. In this static loading test, we have used a full scale blade of 100 kW in capacity. The results show that the acoustic emission activities give a good agreement with the stress distribution and damage location in the blade. Finally, the applicability of the new source location method was confirmed by comparison of the result of source location and experimental damage location.

Estimation Method of Strain Distribution for Safety Monitoring of Multi-span Steel Beam Using FBG Sensor (FBG센서를 이용한 다경간 강재 보 구조물의 안전성 모니터링을 위한 변형률 분포 추정 기법)

  • Oh, Byung-Kwan;Lee, Ji-Hoon;Choi, Se-Woon;Park, Hyo-Seon;Kim, You-Sok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.138-149
    • /
    • 2014
  • This study proposes an estimation method of strain distribution for multi-span steel beam structure under unspecific loading conditions. The estimation method in this paper employs the curve fitting using the least square method from measured strain data, not analytical method. To verify the proposed estimation method, a static loading test for multi-span steel beam on which distributed and concentrated loads act was conducted. The strain data for verification was measured by FBG sensors that have multiplexing technology. The analysis of the accuracy of strain estimation for distributed and concentrated loads and the errors by considering the number of measured points used in the estimation were conducted. In the maximum strain points, the strains could be estimated with the errors of 5.89% (loading step 1) and 6.26% (loading step 2). In case of decreasing the number of sensors, it was also confirmed that the errors increased (0.26~0.37%). Through the curve fitting method, it is possible to estimate the strain distribution (maximum strains and their locations) of multi-span beam for unspecific loads and go over the limit of the analytical estimation method which is suitable for specific distributed loads.

Design and construction of verification complex that checks the efficiency on water permeability of permeable pavement parking lot LID (투수 주차장형 LID 투수효율성 검증실험단지 설계 및 구축)

  • Lee, Eun Ku;Shin, Hyun Shuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.317-317
    • /
    • 2016
  • 저영향개발(Low Impact Development, LID) 시설들은 미국 일본 등 선진국을 중심으로 관련법에 따라 개발 및 적용 되어왔으나 국내에서는 최근에서야 LID 시설을 적용할 수 있는 제도적인 틀을 구축하고 있는 실정이며, 국내 여건에 맞는 LID 시설을 개발하여 그 효용성을 검증하기 까지는 상당한 시간이 소요될 것으로 판단된다. 서울시는 2014년 '서울특별시 빗물관리에 관한 조례 전부개정조례'를 발표함으로써 한국형 LID 시설을 대단위로 적용 하고 검증 할 수 있는 발판을 마련하였다. 서울시의 2014년 전부개정조례에 따르면 시장 및 구청장은 저영향개발 계획 수립의 실효성 확보를 위하여 저영항개발 사전협의 제도를 마련하여 시행하여야 하며, 시장은 저영향개발 지구단위계획을 수립하여야 한다. 이에 따라, 본 연구에서는 실제로 적용 가능한 투수포장 주차장을 설계 할 수 있도록 투수 주차장형 LID 시설을 검증할 수 있는 투수효율성 검증실험단지를 설계 및 구축 하였다. 과거 도심의 우수배제는 중앙 집중형 시스템으로 단기간에 우수를 차집하여 배제하는 방식이었으나, 근래에는 집중형 우수배제 시스템의 위험성, 경제성 그리고 용량한계 등 여러 가지 문제점이 부각되면서 분산형 시스템으로의 전환이 이루어지고 있다. 물순환도시 및 지속가능한 도시 등이 분산형 우수배제 시스템의 예이며, 주차장, 도로, 건물 등 불투수 표면으로부터의 우수를 지면으로 침투 및 침루시키는 방법 등을 활용하여 건전한 물순환을 꾀하고 있다. 침투 및 침루 능력은 각각 포장체 및 포장면 하부구조의 재료와 밀접한 관련이 있으며 재료의 선정은 하부구조의 안정성 확보를 고려하여 선택되어야 한다. 또한 우수 배제를 위한 유공관은 접합점에서 강도를 유지하면서 효율적으로 유수를 배제할 수 있어야 하며, 저류조 설치는 강수의 활용목적에 맞게 선정되어야 한다. 이러한 투수 주차장형 LID 시설은 하나의 시스템으로서 포장체의 재료에 따른 공학적 성질, 하부구조 구축방법 및 재료 선정 그리고 유공관 배열 등에 따라 그 시스템의 거동이 변화하므로 기존에 행해왔던 단순 재료실험으로는 투수성 주차장의 우수배제 시스템을 평가할 수 없다. 따라서 본 연구에서는 이를 검증할 수 있는 투수효율성 검증실험단지 설계 및 구축하였다.

  • PDF

Study on the Numerical Analysis of Crash Impact Test for External Auxiliary Fuel Tank based on ALE (ALE 기반 외부 보조연료탱크 충돌충격시험 수치해석 연구)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • A fluid-structure interaction analysis should be performed to evaluate the behavior of the internal fuel and its influence in order to confirm the structural soundness of the fuel tank against external impacts. In the past, fluid-structure interaction analyses have been limited to the obtention of numerical simulation results due to the need for considerable computational resources and excessive computation time. However, recently, computer performance has been dramatically improved, enabling complex numerical analyses such as fluid-structure interaction analysis to be conducted. Lagrangian and Euler coupling methods and Lagrangian based analysis methods are mainly used for fluid-structure interaction analysis. Since both of these methods have their advantages and disadvantages, it is necessary to select the more appropriate one when conducting a numerical analysis. In this study, a numerical analysis of a crash impact test for a fuel tank is performed using ALE. The purpose of the numerical analysis is to estimate the possibility of failure of the fuel tank mounted inside the container when it is subjected to a crash impact. As a result of the numerical analysis, the fluid behavior inside the fuel tank is investigated and the stress generated in the fuel tank and the container structure is calculated, thereby enabling the possibility of fuel tank failure and leakage of the internal fluid to be evaluated.

Structural Health Monitoring of Harbor Caisson-type Structures using Harmony Search Method (최적화 화음탐색법을 이용한 항만 케이슨 구조물의 구조건전성 평가)

  • Lee, So-Young;Kim, Jeong-Tae;Yi, Jin-Hak;Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.122-128
    • /
    • 2009
  • In this study, damage detection method using harmony search method and frequency response is proposed. In order to verify this method, the following approaches are implemented. Firstly, damage detection method using harmony search was developed. To detect damage, objective functions that minimize difference with natural frequency and modal strain energy from undamaged and damaged model are used. Secondly, efficiency of developed damage detection method was verified by damage detection of beam structure. And results of harmony search and micro genetic algorithm are compared and evaluated. Thirdly, numerical model was implemented for harbor caisson structure and damage scenario was determined. Lastly, damage detection was performed by proposed method and utility of proposed method is verified.