• Title/Summary/Keyword: 구역반사

Search Result 38, Processing Time 0.034 seconds

Verification of precipitation enhancement by weather modification experiments using radar data (레이더 자료를 이용한 기상조절 실험에 의한 강수 증가 검증 연구)

  • Ro, Yonghun;Cha, Joo-Wan;Chae, Sanghee
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.999-1013
    • /
    • 2020
  • Weather modification research has been actively performed worldwide, but a technology that can more quantitatively prove the research effects are needed. In this study, the seeding effect, the efficiency of precipitation enhancement in weather modification experiment, was verified using the radar data. Also, the effects of seeding material on hydrometeor change was analyzed. For this, radar data, weather conditions, and numerical simulation data for diffusion were applied. First, a method to analyze the seeding effect in three steps was proposed: before seeding, during seeding, and after seeding. The proposed method was applied to three cases of weather modification experiments conducted in Gangwon-do and the West Sea regions. As a result, when there is no natural precipitation, the radar reflectivity detected in the area where precipitation change is expected was determined as the seeding effect. When natural precipitation occurs, the seeding effect was determined by excluding the effect of natural precipitation from the maximum reflectivity detected. For the application results, it was found that the precipitation intensity increased by 0.1 mm/h through the seeding effect. In addition, it was confirmed that ice crystals, supercooled water droplets, and mixed-phase precipitation were distributed in the seeding cloud. The results of these weather modification research can be used to secure water resources as well as for future study of cloud physics.

Multiple vertical depression-based HMS active target detection using GSFM pulse (GSFM 펄스를 이용한 다중 수직지향각 기반 선체고정소나 능동 표적 탐지)

  • Hong, Jungpyo;Cho, Chomgun;Kim, Geunhwan;Lee, Kyunkyung;Yoon, Kyungsik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.237-245
    • /
    • 2020
  • In decades, active sonar, which transmits signals and detects incident signals reflected by underwater targets, has been significantly studied since passive sonar in Anti-Submarine Warfare (ASW) detection performance becomes lowered, as underwater threats become their radiated noise reduced. In general, active sonar using Hull-Mounted Sonar (HMS) adjusts vertical tilt (depression) and sequentially transmits multiple Linear Frequency Modulation (LFM) subpulses which have non-overlapped bands, i. e. 1 kHz ~ 2 kHz, 2 kHz ~ 3 kHz, in order to reduce shadow zones. Recently, however, Generalized SFM (GSFM), which is generalized form of SFM, is proposed, and it is confirmed that subpulses of GSFM have orthogonality among each other depending on setting of GSFM parameters. Hence, in this paper, we applied GSFM to active target detection using HMS to improve the performance by the signal processing gain obtained from enlarged bandwidths of GSFM subpulses compared to those of LFM subpulses. Through simulation, we verified that when the number of subpulses is three, the matched filter gain of GSFM is approximately 5 dB higher than that of LFM.

Rainfall estimation and evaluation for a small-scale rainfall radar in Busan Eco-Delta Smart city (부산 에코델타 스마트시티 소형 강우레이더 강우추정 및 평가)

  • Wan Sik Yu;Kyoung Pil Kim;Shin Uk Kang;Seong Sim Yoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.277-277
    • /
    • 2023
  • 최근 기후변화의 영향으로 호우의 발생빈도가 증가하고 있는 추세이며, 도시지역의 호우는 돌발적이고 국지적인 특성을 가지고 있어 인명과 재산피해 역시 증가하고 있으며, 급격한 도시화로 인한 구조적으로 홍수에 취약한 실정이다. 국지성 도시호우는 저층(1 km 내외)에서 형성되는 강우가 지배적이며, 기존의 대형레이더는 높은 산 정상에 설치되어 1.5 km 이상의 강우관측을 중심으로 운영됨에 따라 저층강우의 탐지 및 변동성 관측에 취약하여, 이에 대형 레이더에서 뿐만 아니라 도시단위의 국지성 호우관측에 대응할 수 있는 소형 레이더 기반 고정밀 강우관측 마련 및 운영 기술이 필요하다. 현재 K-water는 부산 에코델타 스마트시티에 도시 물재해 플랫폼 구현의 일환으로 돌발강우사전 탐지 및 도시의 신속·정확한 강우 관측을 위하여 높은 시공간 해상도를 제공하는 이중편파X 밴드 소형 강우레이더를 설치하고, 효율적 운용을 위해 각 고도각에서의 빔 차폐율을 확인하고 이를 고려한 최적 관측전략을 수립하였다. 또한 Z-Phi 방법을 이용한 반사도 감쇠 보정 기술을 개발하였으며, 강우 추정을 위해 하이브리드 고도면 합성 기법(HSR) 기법을 적용하고 검증하였다. 이후 소형 레이더의 정량적 추정강수를 이용하여 강우예측 정보를 생산하기 위해 이류모델을 적용하고, 비슬산과 소형 합성 레이더 추정강수로 선행 10분에서 180분까지 예측할 수 있도록 개발하였다. 또한, 지상강우관측 자료와의 정확도 비교 평가를 수행하고, 행정구역 및 표준유역의 예측 평균강우량을 생산하여 부산 에코델타 스마트시티 도시 물재해 통합관리 시스템과 연계운영을 위한 후속 과업을 수행중에 있다.

  • PDF

Validation of spatial rainfall measurement of an electromagnetic wave rain gauge (전파강수계의 강우 공간분포 측정 성능 검증)

  • Lee, Jung Duk;Kim, Won;Lee, Chanjoo;Lim, Sanghun;Kim, Donggu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.232-232
    • /
    • 2021
  • 수재해 저감과 예방을 위해서는 공간적 변동성을 반영한 정확한 면적 강우량의 측정은 필수적이다. 이러한 요구에 부응하기 위해 24 GHz 이중편파 전자파를 기반으로 소규모 공간 범위에 대해 저고도의 지상 강우를 30 m의 거리해상도로 관측할 수 있는 전파강수계가 개발되었다. 전파강수계는 시제품이 개발된 이래로 한국건설기술연구원 연천센터와 국내 여러 현장과 인도네시아 등에서 시험을 실시하였다. 임상훈 등(2020)은 전파강수계의 반사도와 비차등위상차를 이용한 강우 추정식을 개발하여 연천 및 거제 관측 자료에 적용한 바 있다. 본 논문에서는 연천센터에 분산 배치한 우량계 자료를 이용하여 전파강수계의 강우 공간분포 측정 성능을 평가하였다. 공간우량계는 15대 중 음영구역 바깥에서 정상 작동한 7개의 0.5mm급 우량계 자료와 핏게이지에 있는 0.2mm급 우량계 2대가 비교에 사용되었다. 전파강수계 강우강도는 비교 위치에 해당하는 점 주변의 레이 방향 5개(37.5 m에 해당) 및 방위각 방향 5개 게이트 등 총 25개의 복셀에서 산출된 강우 정보를 평균하여 비교하였다. 정확도는 지상우량계를 참값으로 보고 MAE(Mean absolute error)로 평가하였다. 그 결과 평균 4.2%의 오차를 보였으며, 우량계의 오차를 ±5%로 가정할 경우 3.3~7.9%로 나타났다. 전파강수계의 누적 강우량 값은 강우계에 비해 작은데, 이는 지속적인 관측을 통해 강우 산정의 정확도를 개선하는 것이 필요함을 의미한다.

  • PDF

Mapping of Drought Index Using Satellite Imagery (위성영상을 활용한 가뭄지수 지도제작)

  • Chang, Eun-Mi;Park, Eun-Ju
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.3-12
    • /
    • 2004
  • It is necessary to manage water resources in rural areas in order to achieve proper development of new water resources, sustainable usage and reasonable distribution. This paper aims to analyze multi-temporal Landsat-7 ETM+data for soil moisture that is essential for crops in Ahnsung area. The ETM data was also fused with KOMPSAT-1 images in order to be used as backdrop watershed maps at first. Multi-temporal Images showed also the characteristics of soil moisture distribution. Images taken in April showed that rice paddy had as low reflectance as artificial features. Compared with April scenes, those taken in Hay and June showed wetness index increased in the rice paddies. The mountainous areas have almost constant moisture index, so the difference between the dates was very low while reservoirs and livers had dramatic changes. We can calculate total potential areas of distribution of moisture content within the basin and estimate the areas being sensitive to drought. Finally we can point out the sites of small rice paddies lack of water and visualize their distribution within the same basin. It can be said that multi-temporal Landsat-7 ETM+ and KOMPSAT data can be used to show broad drought with quick and simple analysis. Drought sensitiveness maps may enable the decision makers on rural water to evaluate the risk of drought and to measure mitigation, accompanied with proper data on the hydrological and climatic drought.

  • PDF

A geophysical survey result over a hydrocarbon contaminated site (물리탐사를 이용한 국내 유류오염지역 조사 사례)

  • Song Yoonho;Park Sam Gyu;Seol Soon Jn;Choi Seong-Jun;Chung Seung-Hwan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.122-140
    • /
    • 2001
  • We have applied the geophysical survey, mainly electric and electromagnetic (EM) methods, to a test site contaminated by hydrocarbon waste disposal and local spill. The multi-frequency, moving source & receiver EM survey along with ground penetrating radar (GPR) showed a fairly good performance in detection of buried metal pipes and objects. Magnetic survey measuring vertical and horizontal gradients were so sensitive to the small metallic objects spread over the surface that it's hard to discriminate the buried pipe. We chose electrical resistivity, EM and GPR survey to examine the soil contamination. Depth slices of resistivity distribution as the results of the inversion of resistivity and EM data coincided each other and closely matched the contaminated area determined by chemical analysis of the soil samples. GPR images did not show the reflection events related with contamination plume since there are no distinct spill in this site. We inferred the contamination using the penetration depth of the GPR energy, which could be used as auxiliary information to the resistivity and EM results. We summarized the applicability of each survey methods based on this results and proposed a desirable survey scheme for the determination of hydrocarbon contaminated site.

  • PDF

A Study on Rice Growth and Yield Monitoring Using Medium Resolution Landsat Imagery (LANDSAT 위성영상을 이용한 벼 생육 및 수량 모니터링)

  • Kim, Min-Ho;Lee, Chung-Kuen;Park, Ho-Ki;Lee, Jae-Eun;Koo, Bon-Cheol;Shin, Jin-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.4
    • /
    • pp.388-393
    • /
    • 2008
  • Earth observation satellite imagery having medium-resolution can provide the useful information very rapidly and cheaply. The objective of this study was to assess the feasibility for monitoring rice growth and yield using medium resolution satellite imagery at Seosan AB reclaimed area, Chung-nam province. Using the LANDSAT imagery at booting stage ($29^{th}$ July 2004), $NDVI_R$ had the most significant linear relationships with rice yield of Seosan AB reclaimed area with the correlation coefficient (r) as 0.68. Therefore, this relationship was established as rice yield equation as function of $NDVI_R$, where excluding the 10 small area having low number of pixel, the determination coefficient ($R^2$) of the linear regression between NDVIred and milled rice yield was improved to 0.66. In addition, raster masking method, which was easier and faster even if a little unaccurate than preexisting method, was established for extracting information paddy field zone. Adaptability of rice yield equation function of $NDVI_R$ on year and region was investigated using rice yield and $NDVI_R$ values, which were extracted with raster masking method, from 7 counties or cities, Kyeong-ki province in 2005. Relationship between observed and calculated rice yield showed 1:1 line indicating that the adaptability was admitted.

Field and remote acquisition of hyperspectral information for classification of riverside area materials (현장 및 원격 초분광 정보 계측을 통한 하천 수변공간 재료 구분)

  • Shin, Jaehyun;Seong, Hoje;Rhee, Dong Sop
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1265-1274
    • /
    • 2021
  • The analysis of hyperspectral characteristics of materials near the South Han River has been conducted using riverside area measurements by drone installed hyperspectral sensors. Each spectrum reflectance of the riverside materials were compared and analyzed which were consisted of grass, concrete, soil, etc. To verify the drone installed hyperspectral measurements, a ground spectrometer was deployed for field measurements and comparisons for the materials. The comparison results showed that the riverside materials had their unique hyperspectral band characteristics, and the field measurements were similar to the remote sensing data. For the classification of the riverside area, the K-means clustering method and SVM classification method were utilized. The supervised SVM method showed accurate classification of the riverside area than the unsupervised K-means method. Using classification and clustering methods, the inherent spectral characteristic for each material was found to classify the riverside materials of hyperspectral images from drones.

A Study on Minimization of Harbor Oscillations by Infragravity Waves Using Permeable Breakwater (투과제를 이용한 중력외파의 항내 수면진동 저감 방법에 대한 연구)

  • Kwak, Moon Su;Jeong, Weon Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.434-445
    • /
    • 2020
  • In this study, the minimization of harbor oscillation using permeable breakwater was applied to the actual harbor and investigated an effect of minimization by computer simulation in order to take into account the water quality problems and measures of harbor oscillation by infragravity waves at the same time. The study site is Mukho harbor located at East coast of Korea that harbor oscillation has been occurred frequently. The infragravity waves obtained by analyzing the observed field data for five years focused on the distribution between wave periods of 40 s and 70 s and wave heights in less than 0.1 m was 94% of analyzing data. The target wave periods was 68.0 s. The most effective method of minimization of harbor oscillation by infragravity waves was to install a detached permeable breakwater with transmission coefficient of 0.3 on the outside harbor and replace some area of the vertical wall in the harbor with wave energy dissipating structure to achieve a reflectivity of 0.9 or less. The amplitude reduction rate of this method shown in 27.4%. And the effect of the difference in transmission coefficient of permeable breakwater on the reduction rate of the amplitude was not significant.

Accuracy analysis of Multi-series Phenological Landcover Classification Using U-Net-based Deep Learning Model - Focusing on the Seoul, Republic of Korea - (U-Net 기반 딥러닝 모델을 이용한 다중시기 계절학적 토지피복 분류 정확도 분석 - 서울지역을 중심으로 -)

  • Kim, Joon;Song, Yongho;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.409-418
    • /
    • 2021
  • The land cover map is a very important data that is used as a basis for decision-making for land policy and environmental policy. The land cover map is mapped using remote sensing data, and the classification results may vary depending on the acquisition time of the data used even for the same area. In this study, to overcome the classification accuracy limit of single-period data, multi-series satellite images were used to learn the difference in the spectral reflectance characteristics of the land surface according to seasons on a U-Net model, one of the deep learning algorithms, to improve classification accuracy. In addition, the degree of improvement in classification accuracy is compared by comparing the accuracy of single-period data. Seoul, which consists of various land covers including 30% of green space and the Han River within the area, was set as the research target and quarterly Sentinel-2 satellite images for 2020 were aquired. The U-Net model was trained using the sub-class land cover map mapped by the Korean Ministry of Environment. As a result of learning and classifying the model into single-period, double-series, triple-series, and quadruple-series through the learned U-Net model, it showed an accuracy of 81%, 82% and 79%, which exceeds the standard for securing land cover classification accuracy of 75%, except for a single-period. Through this, it was confirmed that classification accuracy can be improved through multi-series classification.