• 제목/요약/키워드: 구어체 문장 생성

검색결과 6건 처리시간 0.017초

문장틀 기반 Sequence to Sequence 구어체 문장 문법 교정기 (Template Constrained Sequence to Sequence based Conversational Utterance Error Correction Method)

  • 정지수;원세연;서혜인;정상근;장두성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.553-558
    • /
    • 2022
  • 최근, 구어체 데이터에 대한 자연어처리 응용 기술이 늘어나고 있다. 구어체 문장은 소통 방식 등의 형태로 인해 정제되지 않은 형태로써, 필연적으로 띄어쓰기, 문장 왜곡 등의 다양한 문법적 오류를 포함한다. 자동 문법 교정기는 이러한 구어체 데이터의 전처리 및 일차적 정제 도구로써 활용된다. 사전학습된 트랜스포머 기반 문장 생성 연구가 활발해지며, 이를 활용한 자동 문법 교정기 역시 연구되고 있다. 트랜스포머 기반 문장 교정 시, 교정의 필요 유무를 잘못 판단하여, 오류가 생기게 된다. 이러한 오류는 대체로 문맥에 혼동을 주는 단어의 등장으로 인해 발생한다. 본 논문은 트랜스포머 기반 문법 교정기의 오류를 보강하기 위한 방식으로써, 필요하지 않은 형태소인 고유명사를 마스킹한 입력 및 출력 문장틀 형태를 제안하며, 이러한 문장틀에 대해 고유명사를 복원한 경우 성능이 증강됨을 보인다.

  • PDF

RNN-LSTM 기반 장면 자막 메타데이터 생성 방법 (A method for creating the Scene closed-caption metadata based on RNN-LSTM)

  • 곽창욱;김선중
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.153-155
    • /
    • 2018
  • 정확한 영상 검색을 지원하기 위해 다양한 데이터와 방법들을 통한 메타데이터 생성 연구들이 이루어지고 있다. 자막 데이터를 기존의 키워드 기반의 메타데이터 생성 방법을 이용했을 경우, 구어체, 불완전 문장의 특징을 가진 특징을 반영하는데 어려움이 있었다. 또한, 단순히 키워드 매칭에 의존하기 때문에 문장에 중의적 단어가 포함되어 있을 경우에 검색 정확도가 떨어진다는 한계점이 있다. 따라서, 본 논문에서는 이러한 문제를 해결하기 위해 문장 전체를 특정 단위로 표현한 메타데이터를 생성한다. 이를 위해 비지도 학습인 RNN-LSTM 기반 네트워크를 이용하여 자막을 인코딩하고 장면 지식으로 생성하는 방법을 제안한다. 실험에서는 본 시스템을 통해 임의의 자막을 입력하고 유사도 기반의 결과 비교를 통해 자막 메타데이터의 정성적 평가를 수행하였다.

  • PDF

문장 부호 자동 완성을 위한 한국어 말뭉치 구축 연구 (A Study on Building Korean Dialogue Corpus for Punctuation and Quotation Mark Filling)

  • 한승규;양기수;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.475-477
    • /
    • 2019
  • 문장 부호란, 글에서 문장의 구조를 잘 드러내거나 글쓴이의 의도를 쉽게 전달하기 위하여 사용되는 부호들로, 따옴표나 쉼표, 마침표 등이 있다. 대화 시스템과 같이 컴퓨터가 생성해 낸 문장을 인간이 이해해야 하는 경우나 음성 인식(Speech-To-Text) 결과물의 품질을 향상시키기 위해서는, 문장 부호의 올바른 삽입이 필요하다. 본 논문에서는 이를 수행하는 딥 러닝 기반 모델을 훈련할 때 필요로 하는 한국어 말뭉치를 구축한 내용을 소개한다. 이 말뭉치는 대한민국정부에서 장관급 이상이 발언한 각종 연설문에서 적절한 기준을 통해 선별된 고품질의 문장으로 구성되어 있다. 문장의 총 개수는 126,795개이고 1,633,817개의 단어들(조사는 합쳐서 한 단어로 계산한다)로 구성되어 있다. 마침표와 쉼표는 각각 121,256개, 67,097개씩이다.

  • PDF

한국어 모바일 대화형 에이전트 시스템 (A Korean Mobile Conversational Agent System)

  • 홍금원;이연수;김민정;이승욱;이주영;임해창
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권6호
    • /
    • pp.263-271
    • /
    • 2008
  • 본 논문에서는 한국어 정보처리 기술을 사용한 모바일 환경의 대화형 에이전트 시스템에 대해 논한다. 대화형 에이전트 시스템 구축의 목적은 인간 사용자와 시스템 에이전트간의 자연어 인터페이스를 제공하여 보다 편리한 상호작용을 가능하게 하는 데 있다. 모바일 환경의 대화형 에이전트를 구축하기 위해서는 구어체 발화에 특화된 다양한 언어 처리 및 언어 이해 요소들이 필요하다. 본 시스템은 입력 문장의 오류처리, 형태소 분석 및 품사 태깅, 양태 분석, 논항 인식 및 의미프레임 생성, 그리고 유사 발화 검색 및 응답 생성으로 구성된다. 주어진 사용자 발화에 적절한 응답을 생성하기 위해서 본 시스템은 사용자 발화와 예제 발화 간의 어휘적, 통사/구문적, 의미적 유사도 정보를 활용하여 예제기반 응답 검색을 수행한다.

  • PDF

언어모델을 활용한 문서 내 발화자 예측 분류 모델 (Speaker classification and prediction with language model)

  • 김경민;한승규;서재형;이찬희;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.317-320
    • /
    • 2020
  • 연설문은 구어체와 문어체 두 가지 특성을 모두 갖고 있는 복합적인 데이터 형태이다. 발화자의 문장 표현, 배열, 그리고 결합에 따라 그 구조가 다르기 때문에, 화자 별 갖는 문체적 특성 또한 모두 다르다. 국정을 다루는 정치인들의 연설문은 국정 현황을 포함한 다양한 주요 문제점을 다룬다. 그러면 발화자의 문서 내 문체적 특성을 고려할 경우, 해당 문서가 어느 정치인의 연설문인지 파악 할 수 있는가? 본 연구에서는 대한민국 정책 브리핑 사이트로부터 한국어 기반 사전 학습된 언어 모델을 활용하여 연설문에 대한 미세조정을 진행함으로써 발화자 예측 분류 모델을 생성하고, 그 가능성을 입증하고자 한다. 본 연구는 5-cross validation으로 모델 성능을 평가하였고 KoBERT, KoGPT2 모델에서 각각 90.22%, 84.41% 정확도를 보였다.

  • PDF

SNS 채팅 데이터에 적응적인 Self-Attention 기반 문맥의존 철자오류 교정 시스템 (Adaptive Context-Sensitive Spelling Error Correction System Based on Self-Attention for Social Network Service Chatting Data)

  • 최혜원;장대식;손동철;이승욱;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.362-367
    • /
    • 2019
  • 본 논문에서는 Self-Attention을 활용한 딥러닝 기반 문맥의존 철자오류 교정 모델을 제안한다. 문맥의존 철자오류 교정은 최근 철자오류 교정 분야에서 활발히 연구되고 있는 문제 중 하나이다. 기존에는 규칙 기반, 확률 기반, 임베딩을 활용한 철자오류 교정이 연구되었으나, 아직 양질의 교정을 수행해내기에는 많은 문제점이 있다. 따라서 본 논문에서는 기존 교정 모델들의 단점을 보완하기 위해 Self-Attention을 활용한 문맥의존 철자오류 교정 모델을 제안한다. 제안 모델은 Self-Attention을 활용하여 기존의 임베딩 정보에 문맥 의존적 정보가 반영된 더 나은 임베딩을 생성하는 역할을 한다. 전체 문장의 정보가 반영된 새로운 임베딩을 활용하여 동적으로 타겟 단어와의 관련 단어들을 찾아 문맥의존 철자 오류교정을 시행한다. 본 논문에서는 성능평가를 위해 세종 말뭉치를 평가 데이터로 이용하여 제안 모델을 실험하였고, 비정형화된 구어체(Kakao Talk) 말뭉치로도 평가 데이터를 구축해 실험한 결과 비교 모델보다 높은 정확율과 재현율의 성능향상을 보였다.

  • PDF