• Title/Summary/Keyword: 구속재

Search Result 236, Processing Time 0.023 seconds

Performance Verification of Hinge Driving Segmented Nut Type Holding and Release Mechanism for Cube Satellite Applications (큐브위성용 힌지 구동형 분리너트식 구속분리장치의 실험적 성능검증)

  • Oh, Hyun-Ung;Lee, Myeong-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.529-534
    • /
    • 2014
  • Pyrotechnic devices are widely used for space appendages. However, a cube satellite requirements do not permit the use of explosive pyrotechnic device. A nichrome burn wire release has typically been used for holding and release of deployable appendages of the cube satellite due to its simplicity and low cost. However, relatively low mechanical constraint force and system complexity for application of multi-deployable systems are disadvantages of the conventional mechanism. To overcome these drawbacks, we developed a hinge driving segmented nut type holding and release mechanism based on the nichrome burn wire release. The functional performance of the mechanism has been verified through release function test, static load test and shock level measurement test.

Launch and On-orbit Environment Verification Test of Flight Model of Hinge Driving Type Holding and Release Mechanism based on the Burn Wire Release (열선분리방식을 이용한 힌지구동형 구속분리장치 비행모델의 발사 및 궤도환경 검증시험)

  • Lee, Myeong-Jae;Lee, Yong-Keun;Kang, Suk-Joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.274-280
    • /
    • 2016
  • Hinge driving type holding and release mechanism based on the burn wire release for application of cubesat is main payload of STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project) to be launched at 2015. It has high constraint force, low shock level as well as surmounting drawbacks of conventional nichrome burn wire release method that has relatively low constraint force and system complexity for application of multi-deployable systems. In this paper, we have proposed a flight model of holding and release mechanism for the verification of the constraint force and deployment status signal acquisition. To validate the effectiveness of the flight model, launch and on-orbit environment verification test have been performed.

Trajectory Control for Re-entry Vehicle (재진입비행체의 궤적제어)

  • 박수홍;이대우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.361-364
    • /
    • 1997
  • The re-enty guidance design involves trajectory optimization, generation of a reference drag acceleration profile with the satisfaction of trajectory constraints. This reference drag acceleration profile can be considered as the reference trajectory. This paper proposes the atmospheric re-entry system which is composed of longitudinal, later and range control. This paper shows the a performance of a re-entry guidance and control system using feedback linearization control and predictive control.

  • PDF

Restraint Coefficient of Long-Term Deformation and loss Rate of Pre-Compression for Concrete (콘크리트 장기변형의 구속계수와 선압축력의 손실률)

  • 연정흠;주낙친
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.521-529
    • /
    • 2002
  • A restraint coefficient for creep and dry shrinkage deformation of concrete in a composite section was derived to calculate the residual stress, and an equation for the loss rate of the pre-compression force was proposed. The derived restraint coefficient was computed by using the transformed section properties for the age-adjusted effective modulus of elasticity. The long-term behavior of complicate composite sections could be analyzed easily with the restraint coefficient. The articles of the current design code was examined for PSC and steel composite sections. The dry shrinkage strains of $150 ~ 200$\times$10^{-6}$ for the computations of the statically indeterminate force and the expansion joint could be under-estimated for less restrained sections such as the reinforced concrete. The dry shrinkage strain of $180$\times$10^{-6}$ for the computation of residual stress in the steel composite section was unreasonably less value. The loss rate of 16.3% of the design code for the PSC composite section in this study was conservative for the long-term deformation of the ACI 205 but could not be used safely for that of the Eurocode 2. For pre-compressed concrete slab in the steel composite section, the loss rate of prestressed force with low strength reinforcement was much larger than that with high strength tendon. The loss rate of concrete pre-compression increased, while that of pre-tension decreased due to the restraint of the steel girder.

Shrinkage Properties of High Performance Concrete Depending on Specimen Size and Constraint of Reinforcing Bar (공시체 크기 변화 및 철근구속에 따른 고성능콘크리트의 수축 특성)

  • Han, Cheon-Goo;Kang, Su-Tae;Koh, Kyung-Taek;Hann, Chang-Pyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.13-19
    • /
    • 2006
  • This paper reports the test results for shrinkage properties of low shrinkage high performance concrete developed by the authors depending on specimen size and constraint of reinforcing bar. As properties in fresh concrete low shrinkage high performance concrete(LSHPC) combined with expansive additives and shrinkage reducing admixture resulted in increase SP dosage due to loss of fluidity compared with that of control mixture concrete, while the dosage of AE agent was decreased. LSHPC exhibited higher compressive and tensile strength than control mixture concrete. For the effect of specimen size, an increase in specimen size led to a reduction of drying shrinkage. However, it was found that the autogenous shrinkage was not affected by the specimen size and measuring method. For constraint condition, an increase in the ratio of reinforcing bar caused the slight reduction in the strain of reinforcing bar, while it increased the autogenous shrinkage stress. It was seen that LSHPC was effective to reduce autogenous shrinkage by as much as 70% compared with control mixture high performance concrete.

A Study on Bearing Capacity Evaluation Method of Surface Reinforcement Method for Soft Ground in Consideration of Stiffness (강성도를 고려한 연약지반 표층처리공법 지지력산정방법에 관한 연구)

  • Ham, Tae-Gew;Seo, Se-Gwan;Cho, Sam-Deok;Yang, Kee-Sok;You, Seung-Kyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1118-1125
    • /
    • 2009
  • This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing Bearing Capacity Evaluation method for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 21 kinds of the laboratory model tests with the end restraint conditions of the reinforcement that comprises the constrained and partially constrained (3 types) conditions were conducted. According to result of tests, Terzaghi's bearing capacity method is adequate to calculate bearing capacity in non-stiff material(geotextile, geogrid). But, It can't adequate to stiff material(bamboo net). So, New bearing capacity method suggest surface reinforcement method of very soft ground which Terzaghi's bearing capacity method modify for effect of stiffness.

  • PDF

Seismic Performance of Fabricated Internally Confined Hollow CFT Column (조립식 내부 구속 중공 CFT 기둥의 내진 성능)

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.397-407
    • /
    • 2013
  • Recently, a great progress has been made in bridge construction technology through the development of high performance materials and new structural types. However, most of attention has been paid to the cast-in-place technologies and material cost saving. The cast-in-place method is always subject to some environmental damages in construction sites, which frequently causes conflicts with residents. To overcome the disadvantages, a lot of fabrication construction method was developed. Most fabrication construction methods developed up to now have been applied for superstructure of bridges. In contrast, such fabricable methods developed for substructures are extremely rare. A fabricated column using ICH CFT(Internally Confined Hollow CFT) column was developed in a series of previous researches. Included in the previous studies are design and construction methods for the precast segmental coping, the column-coping connection, the column-segment connection, column-foundation connection. In this paper, seismic performance of the fabricated ICH CFT columns was extensively investigated experimentally. Two test specimens were prepared depending on the connection methods of segments; one by mortar-grouting method and the other by reinforcement method using stiffeners.

A Study on Optimum Design of an Unconstrained Damping Steel Plate by Using Viscoelastic Damping Material (점탄성 제진재를 이용한 비구속형 제진강판의 최적설계에 관한 연구)

  • 유영훈;양보석
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.493-501
    • /
    • 1995
  • Optimum design of a viscoelastic damping layer which is unconstrainedly cohered on a steel plate is discussed from the viewpoint of the modal loss factor. Themodal loss factor is analyzed by using the energy method to the base steel plate and cohered damping layer. Optimum distributions of the viscoelastic damping layer for modes are obtained by sequentially changing the position of a piece of damping layer to another position which contributes to maximizing the modal loss factors. Analytical procedure performed by using this method simulated for 3 fundamental modes of an edge-fixed plate. Simulated results indicate that the modal loss factor ratios can be increase by as much as 210%, or more, by optimizing the thickness distribution of the damping layer to two times of the initial condition which is entirely covered. Optimum configurations for the modes are revealed by positions where added damping treatments become most effective. The calculated results by this method are validated by comparison with the experimental results and the calculated results obtained by the Ross-Ungar-Kerwin's model in the case of the layer is uniformly treated over the steel plate.

  • PDF

A Geometry Constraint Handling Technique in Beam Stiffener Layout Optimization Problem (보 보강재 배치 최적화 문제에서의 기하구속조건 처리기법)

  • 이준호;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.870-875
    • /
    • 2004
  • Beam stiffeners have frequently been used for raising natural frequencies of base structures. In stiffener layout optimization problems, most of the previous researches considering the position and/or the length of the stiffener as design variables dealt with structures having just simple convex shapes such as a square or rectangle. The reason is concave shape structures have difficulties ill formulating geometry constraints. In this paper, a new geometry constraint handling technique, which can define both convex and concave feasible lesions and measure a degree of geometry constraint violation, is proposed. Evolution strategies (ESs) is utilized as an optimization tool. In addition, the constraint-handling technique of EVOSLINOC (EVOlution Strategy for scalar optimization with Lineal and Nonlinear Constraints) is utilized to solve constrained optimization problems. From a numerical example, the proposed geometry constraint handling technique is verified and proves that the technique can easily be applied to structures in net only convex but also concave shapes, even with a protrusion or interior holes.

  • PDF

A Study on Optimum Design of an Unconstrained Damping Steel Plate by Using Viscoelastic Damping Material (점탄성 제진재를 이용한 비구속형 제진강판의 최적설계에 관한 연구)

  • 유영훈;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.292-297
    • /
    • 1995
  • 본 연구에서는 점탄성 제진층이 탄성기판의 한 면에 피복된 2층 제진강파느이 모달 손실계수의 관점으로부터 부분도포에 의한 최적설계의 가능성을 검토하였다. 즉, 일정한 두께로 전면 도포되어 있는 2층의 제진층을 작은 크기의 조각(piece)으로 분할한 경우, 각각의 조각이 손실계수에 미치는 영향을 손실계수의 증감율로써 평가하고, 최소 영향부위의 조각을 최대 영향부위에 이동하여, 동일 질랴의 제진재로 최대의 제진효과를 얻을 수 있는 제진재의 최적 설계법을 제안한다. 수치계산은 주변고정 평판의 (1,1)(1,2)(1,3) 모드 성분에 대해 수행하여 최적설계에 의한 손실계수의 증가와 그때 제진재의 배열형상을 조사하였다. 본 수법에 의해 얻어진 결과는 실험결과와 비교 검토하여 본 최적화 수법의 타당성을 확인하였다. 또한, 제진재의 전면도포의 경우는 Ross-Ungar-Kerwin모델에서도 계산을 수행하여 본 수법의 결과와 비교하였다.

  • PDF