• Title/Summary/Keyword: 구속부재

Search Result 172, Processing Time 0.021 seconds

Numerical Analysis on Structural Behavior of Column-Slab Connection (기둥-슬래브 접합부의 구조거동에 관한 수치해석)

  • Lee, Joo-Ha;Lim, Kwang-Mo;Lee, Byung-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • In this study, the structural performance of high strength concrete (HSC) column-normal strength concrete (NSC) slab connection was investigated according to confinement effects, aspect ratio (h/c) and strength ratio ($f^{\prime}_{cc}/f_{cs}$). The study was conducted by using finite element analysis. To verify the analysis methods, the experiments and analyses results were compared. The specimens were classified by connection types including interior column, edge column, corner column and isolated column. As a result, ultimate strength of interior column was larger than other specimens. Also, the axial stresses of connection were decreased when the aspect ratio was increased. As the strength ratio between column and slab was increased, the ultimate strength of specimens was also increased until the strength ratio was reached to 1.83.

Experimental Investigation on the Compression Behavior of Concrete Filled Circular FRP Tubes (콘크리트 충전 FRP 원통관의 압축거동에 관한 실험적 연구)

  • Joo, Hyung-Joong;Lee, Seung-Sik;Kim, Young-Ho;Park, Jong-Hwa;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.21 no.3
    • /
    • pp.24-30
    • /
    • 2008
  • Durability problems may arise in the concrete, which is one of the major construction materials, used in the construction field. Bridge piers and foundation piles are usually made with concrete and they are exposed to the moisture and hence the durability of the concrete reduced significantly due to oxidization of re-bar and icing of concrete. To mitigate such problems, FRP tube has been developed and the concrete filled FRP tube (CFFT) has been investigated to find the confinement effect which is provided additionally. It was reported that if the concrete is wrapped with FRP, strength and chemical resistance are improved significantly. In order to apply such a member in the construction field, structural behavior and applicable design guideline or design criteria must be thoroughly investigated. In the experimental investigation, the results are compared with the previous research results and the relationship which can predict the ultimate strength and strain is suggested. In addition, some comments found at the compression tests are given briefly.

A Study on the Optimization of a Spacecraft Structure by Using Coupled Load Analysis Model and Modal Transient Analysis (연성하중해석 모델과 모달과도해석을 이용한 위성체 구조부재의 최적화 연구)

  • Hwang, Do-Soon;Lee, Young-Shin;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.34-48
    • /
    • 2004
  • In this paper an optimization algorithm is suggested to reduce the huge computation time in the optimum design of large structures, especially in spacecraft structures. It combines the coupled load analysis model using a constrained mode of component mode synthesis and the modal transient analysis. The computer simulation code is developed and evaluated in optimizing spacecraft platforms. The developed algorithm can alleviate the computational load with adequate accuracy. From the optimization of a spacecraft structural member, the characteristics of each structural member can be understood.

Analytical Study on the Fire Resistance of Internally Confined Hollow CFT Column (내부 구속 중공 CFT 기둥의 내화 성능에 대한 해석 연구)

  • Won, Deok Hee;Han, Taek Hee;Park, Jong Sup;Kim, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.461-470
    • /
    • 2009
  • A column resisting axial load and seismic load is one of the main members in a structural system. The heated column by event of a fire can lose its strength and it may damage its structural system or cause the collapse of the entire structural system. In this study, the fire resistance capacity of internally confined hollow concrete filled tube (ICH CFT) column was investigated. In an ICH CFT column, the yield strength of the external tube is important as a concrete filled tube (CFT) column because the external tube confines the filled concrete and the strength of the column depends on the confined effect. A study was performed by finite element analyses considering the confined effect and material nonlinearity as the temperature changes by the fire. The hollow ratio, the thickness of the external tube, and the strength of concrete were selected as the parameters for the analyses. The analyses were performed by using a commercial FEA program (ABAQUS) and nonlinear concrete model program. The analysis results showed that the hollow ratio and the strength of concrete mainly affect the fire resisting capacity of an ICH CFT column.

A Study on the Mechanical Properties of Concrete Filled Steel Tube Column under Centric Axial Load (중심축력을 받는 콘크리트 충전강관 기둥의 역학적 거동 특성에 관한 연구)

  • 박정민;김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.133-144
    • /
    • 1995
  • This study investigated to the properties of structural behaviors through a series of experiment with the key parameter, such as diameter-to-thickness(D/t) ratio, selenderness ratio of steel t~ube and strength of concrete under loading condition simple confined concrete by steel tube as a fundmental study on adaptability with structural members in high-rise building. The obtained results are sumnarised as follow. (1) The fracture mode of confined concrete was presented digonal tension fracture in the direction of $45^{\circ}$ with compression failure at the end of specimen in stub column, but the fracture mode of long column was assumed an aspect of bending fracture transversely. (2) The deformation capacity and ductility effect was increased by confine steel tube for concrete. (3) 'The emprical formula to predict the ultimate capacity of confined concrete by steel tube and concrete filled steel tube column using restraint of concrete considered D / t ratio, selenderness ratio of steel tube anti strength of' concrete were proposed.

Flexural Strength Design Equation of Concrete Filled Steel Tube(CFT) Column Reinforced by Carbon Fiber Sheet (탄소섬유쉬트로 보강한 콘크리트 충전강관(CFT) 기둥의 휨내력식)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.29-36
    • /
    • 2008
  • The TR-CFT(Transversely Reinforced Concrete Filled Steel Tube) column is proposed to control or at least delay the state of local buckling at the critical section by wrapping the CFT columns with a carbon fiber sheet. In this study, an equation to determine the flexural strength of TR-CFT is proposed. The ACI-318 code, in which the contribution of the confining effect in the concrete filled steel tube is not appropriately accounted for, may be conservative. Therefore, flexural strength design equations for CFT columns and TR-CFT columns are proposed based on the concrete strain-stress curve, which contributes to the confining effect. Finally, the predicted results for the CFT and TR-CFT columns are shown to be in good agreement with actual test results.

Experimental Study for Confined Concrete of Double Skinned Composite Tubular Columns by Uniaxial Compression Test (일축 압축 실험을 통한 DSCT 부재의 구속 콘크리트에 대한 실험적 연구)

  • Lee, Jeong-Hwa;Han, Sang-Yun;Won, Deok-Hee;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.13-21
    • /
    • 2013
  • In this study, uniaxial compression tests were performed to investigates the stress-strain relations of Double Skinned Composite Tubular Columns reinforced with steel tube. The confined concrete has been known as the strength of concrete increases significantly. Specimens reinforced with outer and inner steel tube were tested by uniaxial compression test. To investigate the influence of concrete strength increase by confining conditions in steel tubes, 8 specimens with different thickness of tube, hollowness ratio and concrete strength were tested and compared with other researcher's concrete material model.

Analytical Study on Inelastic Behavior and Ductility Capacity of Reinforced Concerte Bridge Columns Subjected to Seismic Load (지진하중을 받는 철근콘크리트 교각의 비탄성 거동 및 연성능력에 관한 해석적 연구)

  • 김태훈;유영화;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.37-51
    • /
    • 2000
  • 이 연구는 지진 시 철근콘크리트 교각의 비탄성 거동 및 연성능력을 해석적으로 파악하는데 그 목적이 있다. 재료적 비선형성에 대해서는 균열 콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근 모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열 모델로서의 분산균열모델을 사용하였다. 두께가 서로 다른 부재간의 접합부에 단면강성이 급변하기 때문에 생기는 국소적인 불연속변형을 고려하기 위한 경계면 요소를 도입하였다. 또한, 축방향철근의 유무 및 그 양 등에 따른 구속효과를 적절히 표현할 수 있는 해석 모델을 개발하였다. 본 연구에서는 철근콘크리트 교각의 비탄성 거동 및 연성 능력의 파악을 위해 제안한 해석기법을 신뢰성 있는 연구자의 실험결과와 비교하여 그 타당성을 검증하였다.

  • PDF

An Improved Method for Initial Shape Analysis of Cable-Stayed Bridges (사장교의 개선된 초기형상 해석법)

  • Kim, Moon Young;Kyung, Yong Soo;Lee, Jun Sok
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.175-185
    • /
    • 2003
  • The extended tangent stiffness matrices and force-deformation relations of the elastic catenary element were initially derived through the addition of the unstrained length of cables to unknown nodal displacements. A beam-column element was then introduced to model the deck and pylon of cable-stayed bridges. The conventional geometric nonlinear analysis, initial force method, and TCUD method were summarized, with an effective method combining two methods presented to determine the initial shapes of cable-stayed bridges with dead loads. In this combined method, TCUD method was applied to eliminate vertical and horizontal displacements at cable-supported points of decks and on top of pylons, respectively. The initial force method was also adopted to eliminate horizontal and vertical displacements of decks and pylons, Finally, the accuracy and validity of the proposed combined method were demonstrated through numerical examples.

Nonlinear Analysis Method for Reinforced Concrete Members Using Fiber Element (화이버요소를 이용한 철근콘크리트부재의 비선형 해석기법)

  • Park, Bong-Sik;Cho, Jae-Yeol;Park, Jong-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.201-202
    • /
    • 2009
  • The objective of this paper is to develop nonlinear analysis method using fiber element. The program is based on flexibility method and developed for analyzing bernoulli's beam element. Using fiber element, three dimensional effects, such as concrete confinement can be incorporated into the uniaxial stress-strain relationship. In addition, most appropriate modeling method is used for application of bond-slip and shear effects.

  • PDF