• Title/Summary/Keyword: 구성품성능도

Search Result 330, Processing Time 0.024 seconds

A Study on Compressor Map Identification using Artificial Intelligent Technique and Performance Deck Data (인공지능 및 성능덱 데이터를 이용한 압축기 성능도 식별에 관한 연구)

  • Ki Ja-Young;Kong Chang-Duck;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.81-88
    • /
    • 2005
  • In order to estimate the gas turbine engine performance precisely, the component maps containing their own performance characteristics should be needed. In this study a component map generation method which may identify compressor map conversely from a performance deck provided by engine manufacturer using genetic algorithms was newly proposed. As a demonstration example for this study, the PW 206C turbo shaft engine for the tilt rotor type Smart UAV(Unmanned Aerial Vehicle). In order to verify the proposed method, steady-state performance analysis results using the newly generated compressor map was compared with them performed by EEPP(Estimated Engine Performance Program) deck provided by engine manufacturer. And also the performance results using the identified maps were compared with them using the traditional scaling method. When the performance analysis is performed at far away operation conditions from the design point, in case of use of e component map by the traditional scaling method, the error of the performance analysis results is greatly increasing. In the other hand, if in case of use of the compressor map generated by the proposed GAs scheme, the performance analysis results are closely met with those by the performance deck, EEPP.

Modular Program for Conceptual Design of Liquid Rocket Engine System, Part I : Essential Components Design (액체 로켓 엔진시스템 개념설계를 위한 모듈화 프로그램 Part I : 주요 구성품 설계)

  • Yang, Hee-Sung;Park, Byung-Hoon;Yoon, Woong-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.805-815
    • /
    • 2007
  • In order to build a conceptual design program for a liquid rocket engine system, performance based sub-programs for each core component of the engine system were made. Parts included were the combustion chamber, supersonic nozzle, centrifugal pump, and impulsive turbine. Simple mathematical models based on classical thermodynamic and inviscid theories were adopted with proper tuning by empirical data. In Part I, aiming to validate each sub-program, we examined the results of each program qualitatively, and parametrically investigated the sensitivity due to the change in design parameters.

Modular Program for Conceptual Design of Liquid Rocket Engine System, Part II : Integration of Modular Program (액체 로켓 엔진시스템 개념설계를 위한 모듈화 프로그램 Part II: 통합 모듈화 프로그램)

  • Park, Byung-Hoon;Yang, Hee-Sung;Kim, Won-Ho;Yoon, Woong-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.816-825
    • /
    • 2007
  • With a view to building up a program used in conceptual design of liquid rocket engine system, a preliminary performance-based code for an integrated engine system has been developed by incorporating sub-modular programs for each essential engine component. Modular descriptions for each component were formulated mathematically with essential parameters. In the whole iterative circuits for predicting engine performance, matching conditions of mass flow rate and pressure drop through each engine component have been considered. Mass balance calculations at each inter-component boundary are found smoothly converged. All the pressure drops through engine components as a function of mass flow rate are added up to provide turbo-pump outlet condition. In this paper, the flow chart for each iterative circuit and design methodologies are presented. Resultant predictions are validated with real engine data.

Performance requirement and Evaluation of Natural Smoke Exhaust Ventilator for High rise building (고층건물용 배연창의 성능기준 및 시험평가연구)

  • Kwark, Ji-Hyun;Choi, Jung-Min;An, Byung-Ho;Kim, Bum-Kyue;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.129-138
    • /
    • 2009
  • 화재발생시 가장 주요한 사망원인인 유독가스의 제어와, 소방관의 소화활동을 돕기 위한 제연설비는 각 구성품이 유기적으로 동작하는 시스템을 이루기 때문에 전체의 조화도 중요하지만, 기본적으로 각 설비요소가 제 기능을 발휘할 때 전체 시스템의 제연성능을 확보할 수 있게 된다. 그러나 현재 법으로 규정된 국내기준은 주요 구성품별 성능을 제대로 평가할 수 있는 방법 및 기준이 없어 본 연구를 통하여 배연창의 성능평가기술을 개발하고 항목별 성능시험을 실시하여 평가방법의 적합성을 검토하고 국가표준을 만들기 위한 기초 자료로 제공하고자 한다.

  • PDF

A Study on Fault Detection of Main Component for Smart UAV Propulsion system (스마트 무인기 추진시스템의 주요 구성품 손상 탐지에 관한 연구)

  • Kong, Chang-Duk;Kim, Ju-Il;Ki, Ja-Young;Kho, Seong-Hee;Choe, In-Soo;Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.281-284
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle) which has been developed by KARI (Korea Aerospace Research Institute). The measurement parameters of Smart UAV propulsion system are gas generator rotational speed, power turbine rotational speed, exhaust gas temperature and torque. But two measurement such as compressor exit pressure and compressor turbine exit temperature were added because they were difficult each component diagnostics using the default measurement parameter. The performance parameters for the estimate of component performance degradation degree are flow capacities and efficiencies for compressor, compressor turbine and power turbine. Database for network learning and test was constructed using a gas turbine performance simulation program. From application results for diagnostics of the PW206C turboshaft engine using the learned networks, it was confirmed that the proposed diagnostics could detect well the single fault types such as compressor fouling and compressor turbine erosion.

  • PDF

Performance Test of Combustor for Aeropropulsion Gasturbine Engine (항공추진용 가스터빈엔진 연소기 성능시험)

  • Park, Poo-Min;Kim, Hyung-Mo;Choi, Young-Ho;Jeon, Byoung-Ho;Yang, Su-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.405-406
    • /
    • 2008
  • Combustor is one of the major component of gas turbine engine and its development is done mostly by performance test. Combustors for aviation gasturbine engines has been successfully tested at the test facility in KARI as well as for stationary gasturbine engines. Full scale combustor test requires large amount of high temperature and pressure air, so the test facility is equipped with big air compressor and heater.

  • PDF

Performance Modeling and Off-design Performance Analysis of A Separative Jet Turbofan Engine Using SIMULINK (SIMULINK를 이용한 분리형 노즐을 갖는 터보팬엔진 성능모델 구성 및 탈설계점 성능 해석)

  • Kong, Chang-Duk;Park, Gil-Su;Lee, Kyung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.219-224
    • /
    • 2012
  • In this work, a steady-state performance modeling and off-design performance analysis of the 2-spool separate jet turbofan engine named BR715-56 which is a power plant for the narrow body commercial aircraft is carried out for engine performance behaviors investigation and condition monitoring using a commercial code MATLAB/SIMULINK. Firstly, the engine component maps of fan, high pressure compressor, high pressure turbine and low pressure turbine are generated from similar component maps using the scaling method, and then the off-design performance simulation model is constructed by the mass flow matching and the work matching between components. The model is developed using SIMULINK, which has advantages of easy steady-stare and dynamic modelling and user friendly interface function. It is found that the off-design performance analysis results using the proposed model are well agreed with the performance analysis results by GASTURB at various operating conditions.

  • PDF

Study on Effects of Roll in Flight of a Precision Guided Missile for Subsytem Requirements Analysis (구성품 요구 성능 설정을 위한 정밀 유도무기의 비행 중 롤 영향성 연구)

  • Jeong, Dong-Gil;Park, Jin-Seo;Lee, Jong-Hee;Jun, Doo-Sung;Son, Sung-Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2019
  • The operation of the precision-guided missiles with seekers is becoming more and more dominant since the modern wars became geographically localized like anti-terror campaigns and civil wars. Imaging seekers are relatively low-price and applicable to various operational conditions. The image tracker, however, requires highly advanced method for the target tracking under harsh missile flight condition. Missile roll can reduce the tracking performance since it introduces big differences in imagery. The missile roll is inevitable because of the disturbance and flight control error. Consequently, the errors of the subsystems should be under control for the stable performance of the tracker and the whole system. But the performance prediction by some simple metric is almost impossible since the target signature and the tracker are highly nonlinear. We established M&S tool for a precision-guided missile with imaging seeker and analyzed the roll effects to tracking and system performance. Furthermore, we defined the specification of missile subsystems through error analysis to guarantee system performance.

A Study on EASY5 Modeling for Performance Analysis of Turbofan Engine (터보팬 엔진의 성능해석을 위한 EASY5 모델링에 관한 연구)

  • 공창덕;강명철;기자영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.29-30
    • /
    • 2002
  • 본 연구에서는 Boeing사에서 개발한 EASY5 프로그램을 이용하여 터보팬 엔진을 모델링하고 성능해석을 수행하였다. 연구대상 엔진인 BR715-56 엔진은 추력이 20,000lbf급인 2 스풀 터보팬 엔진으로 분리흐름(Separate Flow) 형이다. 엔진은 팬, 압축기, 연소기, 저압터어빈, 압축기터어빈, 팬 노즐 및 Core 노즐로 구성되어 있으며 Station No.는 Fig 1과 같다. 연구에 사용된 EASY5 프로그램은 동역학 시스템을 모델링하고 해석하는 프로그램으로, 제공되는 라이브러리 구성품을 이용하여 보다 쉽게 동적 시스템을 모델링할 수 있다. 또한 Steady-State Solver를 이용하여 정적 평형상태를 빠른 시간에 찾을 수 있어 보다 빠른 해석을 수행할 수 있다. 또한 해석된 동역학 모델을 FORTRAN이나 C 코드로 생성하여 제공함으로써 프로그램의 수정이나 보완이 용이하고, 제공되지 않은 시스템의 라이브러리 구성품의 경우에는 사용자 정의 코드를 만들어 사용함으로써 프로그램의 기능을 확장할 수 있다. EASy5는 대표적인 제어기 설계 소프트웨어인 MATLAB, MATRIX-x와의 호환도 가능하며 NASTRAN등과 같은 유한요소 해석 프로그램과의 데이터 공유도 가능하여 보다 폭 넓은 시스템 모델링과 제어기 설계도 쉽게 할 수 있다.

  • PDF