• Title/Summary/Keyword: 구상화 시멘타이트

Search Result 6, Processing Time 0.075 seconds

A Study on the Threshold Condition of Crack Propagation for Pre-Crack and Micro-Hole Specimens (프리크랙과 微小圓孔材의 크랙成長 下限界條件에 관한 硏究)

  • 송삼홍;윤명진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.278-285
    • /
    • 1988
  • The Critical size of artificially induced micro-holes in 0.17%, 0.36% Carbon steel Specimens with Spheroidized Cementite and in 0.17% carbon steel specimens with martensite structure is compared with annealed pre-crack in order to discuss the physical meaning of the fatigue limit and evaluation of the tolerant micro flaw size at the stress level of the fatigue limit. Results obtained were summarized as follows; (1) In this study, non-propagating crack length of Smooth specimen and critical pre-crack length (lc) is coincide. (2) In the carbon steels with spheroidized cementite structure, critical pre-crack length (lc) and allowable micro-hole size (dc) is coincide each other at the fatigue limit level. (3) It has been published that there exists a particular size of micro-hole which has no effect on the fatigue limit. In this study, the micro-hole of critical size can be regarded as equivalent to a tolerant micro flaw which would not reduce the fatigue limit.

Formation of Ferrite-Cementite Microstructure by Strain Induced Dynamic Transformation in Medium Carbon Steels (중 탄소강의 변형유기 동적변태에 의한 페라이트-시멘타이트 형성거동에 대한 연구)

  • Lee Y. H.;Lee D. L.;Choo W. Y.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.211-214
    • /
    • 2004
  • In the present study, the effect of SIDT (Strain Induced Dynamic Transformation) on the microstructure of medium carbon steels was investigated to develop spheroidized annealing-free steel wire rods. When $0.45\%C$ steels were hot-deformed under the conditions of heavy reduction at low temperatures, a microstructure quite different from conventional ferrite-pearlite structure was obtained. It was considered that this ferrite-cementite microstructure was obtained because very small retained austenite grains existing between fine SIDT ferrites prefer to transform to cementite and ferrite instead of pearlite during cooling. Through the present study, $0.45\%C$ steels containing ferrite-cementite (FC) structure instead of ferrite-pearlite structure was obtained in as-rolled state by introducing SIDT. The specimen containing the FC structure was much softer than that containing conventional ferrite-pearlite structure. Therefore, it is concluded that deforming medium carbon steels under the conditions of SIDT is a very powerful method to obtain soft steel wire rods which could be cold-forged without softening heat-treatment

  • PDF

The Spheroidization of Cementite for Cold Heading Quality Steel by Hot Deformation (고온변형에 의한 냉간압조용강의 시멘타이트 구상화 연구)

  • Lee, Ung-Youl;Kang, Ku-Hyun;Bang, Myung-Seong;Nam, Seung-Eui
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.4
    • /
    • pp.211-215
    • /
    • 2004
  • Conventional spheroidization process of cold heading quality steels requires long heat treatment time, and reduction of the heat treatment time is important for improving productivity in the industry. Recently, hot deformation method has been proposed as a means of increasing spherodization kinetics. In this study, the influences of hot deformation on the spherodization behavior of cold heading quality steels were investigated. Hot deformation at the temperature range of $700^{\circ}C$ significantly enhances the spheroidization kinetics. Hot deformation can lead to a substantial reduction of spherodization process time as low as 1~5 hrs.

Evaluation of Fatigue Strength and Characteristics of Fatigue Crack Closure in SM35C Steel (중탄소강의 피로크랙 개폐구의 특성 및 피로강도의 평가)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • It is not clearly known how surface defects or inclusions of a medium carbon steel affect a fatigue strength. In this study, we used SM35C specimens with spheroidized cementite structure to eliminate dependence of micro structure of fatigue crack. The investigation was carried out by behavior of crack closure at non-propagation crack and effect of the fatigue limit according to the artificial defects size. Experimental findings are obtained as follows : (1) Fatigue crack initiation point of medium carbon steel with spheroidized cementite structure is at the surface defects. (2) Non-propagating crack length of smooth specimen is equal to the critical size of defect. (3) Considering the opening and closure behavior of fatigue crack, the defect shape results in various crack opening displacement, while it does not affects the fatigue limit level of medium carbon steel with spheroidized cementite structure. (4) The critical length of the non-propagation crack of smooth specimen is the same as critical size of defect in transient area which determines threshold condition in steel with spheroidized cementite structure.

  • PDF

The Effect of Cementite Morphology and Matrix-ferrite Microstructure on the Sliding Wear Behavior in Spheroidized High Carbon Steel (구상화 열처리된 고탄소강의 미끄럼 마멸 거동에 미치는 시멘타이트 형상과 페라이트 기지조직의 영향)

  • Hur, H.L.;Gwon, H.;Gu, B.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.96-101
    • /
    • 2016
  • The current study was conducted to elucidate the effect of cementite morphology and matrix-ferrite microstructure on sliding wear behavior in spheroidized high carbon (1wt. % C) steel. The high carbon steel was initially heat treated to obtain a full pearlite or a martensite microstructure before the spheroidization. The spheroidizing heat treatment was performed on the full pearlitic steel for 100 hours at 700℃ and tempering was performed on the martensitic steel for 3 hours at 650℃. A spheroidized cementite phase in a ferrite matrix was obtained for both the full pearlite and the martensite microstructures. Sliding wear tests were conducted using a pin-on-disk wear tester with the heat treated steel as the disk specimen. An alumina(Al2O3) ball was used as the pin counterpart during the test. After the spheroidizing heat treatment and the tempering, both pearlite and martensite exhibited similar microstructures of spheroidized cementite in a ferrite matrix. The spheroidized pearlite specimens had lower hardness than the tempered martensite; however, the wear resistance of the spheroidized pearlite was superior to that of the tempered martensite.

Effect of Pro-eutectoid Ferrite and Cementite-spheroidization on the Sliding Wear Resistance of Carbon Steels (탄소강의 초석페라이트와 시멘타이트 구상화가 미끄럼마멸 거동에 미치는 영향 분석)

  • Hur, H.L.;Gwon, H.;Kim, M.G.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.345-350
    • /
    • 2014
  • The current study elucidates the effects of cementite spheroidization and pro-eutectoid ferrite on the sliding wear resistance in medium carbon (0.45wt%C) and high carbon (1wt%C) steels. Both steels were initially heat treated to obtain a fully pearlite or ferrite + pearlite microstructure. Spheroidizing heat treatments were performed on both steels to spheroidize the pearlitic cementite. Sliding wear tests were conducted using a pin-on-disk wear tester with the steel specimens as the disk and an alumina ($Al_2O_3$) ball as the pin. The sliding wear tests were carried out at room temperature in air with humidity of $40{\pm}2%$. Adapted sliding distance and applied load was 300m and 100N, respectively. Sliding speed was 0.1m/s and the wear-track radius was 9 mm. Worn surfaces and cross-sections of the wear track were examined using an SEM. Micro Vickers hardness of the wear-track subsurface was measured as a function of depth from the worn surface. Hardness and sliding-wear resistance of both steel decreased with increased spheroidization of the cementite. The decrease was more significant in the fully pearlitic steel (1wt%C steel). The steel with the pro-eutectoid ferrite showed relatively higher wear resistance compared to the spheroidized pearlitic steel.