• 제목/요약/키워드: 구상화 시멘타이트

검색결과 6건 처리시간 0.019초

프리크랙과 微小圓孔材의 크랙成長 下限界條件에 관한 硏究 (A Study on the Threshold Condition of Crack Propagation for Pre-Crack and Micro-Hole Specimens)

  • 송삼홍;윤명진
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.278-285
    • /
    • 1988
  • 본 연구에서는 SM15C재와 SM35C재에 퍼얼라이트, 페라이트 조직의 영향을 배재한 비교적 균질한 조직인 구상화시멘타이트조직과 SM35C재에 실용조직 이면서 비교적 균질한 조직인 마르텐사이트 조직을 만들고, 가공하였다.

중 탄소강의 변형유기 동적변태에 의한 페라이트-시멘타이트 형성거동에 대한 연구 (Formation of Ferrite-Cementite Microstructure by Strain Induced Dynamic Transformation in Medium Carbon Steels)

  • 이유환;이덕락;주웅용;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.211-214
    • /
    • 2004
  • 적절한 가공조건을 통하여, 중 탄소강에서 SIDT를 적용하여 페라이트-시멘타이트 미세조직이 압연 직후에 얻어졌다. 또한 이와 같은 조건은 압하온도 $690^{\circ}C$, 높이 감소율 $70\%$ (변형량 1.2) 및 변형율 속도 1/s에서 가공하였을 때 얻어졌으며, 가공 직후 $730^{\circ}C$로 승온하여 약 30분간 유지 후 서냉한 조건에서 매우 연한 미세조직이 얻어짐을 알 수 있었다. 이는 기존 20 시간 이상의 구상화 열처리에 비해 매우 짧은 시간이며, 구상화 열처리를 통한 경험한 미세조직과 유사한 특성을 나타낼 것으로 예상된다.

  • PDF

고온변형에 의한 냉간압조용강의 시멘타이트 구상화 연구 (The Spheroidization of Cementite for Cold Heading Quality Steel by Hot Deformation)

  • 이웅렬;강구현;방명성;남승의
    • 열처리공학회지
    • /
    • 제17권4호
    • /
    • pp.211-215
    • /
    • 2004
  • Conventional spheroidization process of cold heading quality steels requires long heat treatment time, and reduction of the heat treatment time is important for improving productivity in the industry. Recently, hot deformation method has been proposed as a means of increasing spherodization kinetics. In this study, the influences of hot deformation on the spherodization behavior of cold heading quality steels were investigated. Hot deformation at the temperature range of $700^{\circ}C$ significantly enhances the spheroidization kinetics. Hot deformation can lead to a substantial reduction of spherodization process time as low as 1~5 hrs.

중탄소강의 피로크랙 개폐구의 특성 및 피로강도의 평가 (Evaluation of Fatigue Strength and Characteristics of Fatigue Crack Closure in SM35C Steel)

    • 한국생산제조학회지
    • /
    • 제6권1호
    • /
    • pp.45-50
    • /
    • 1997
  • It is not clearly known how surface defects or inclusions of a medium carbon steel affect a fatigue strength. In this study, we used SM35C specimens with spheroidized cementite structure to eliminate dependence of micro structure of fatigue crack. The investigation was carried out by behavior of crack closure at non-propagation crack and effect of the fatigue limit according to the artificial defects size. Experimental findings are obtained as follows : (1) Fatigue crack initiation point of medium carbon steel with spheroidized cementite structure is at the surface defects. (2) Non-propagating crack length of smooth specimen is equal to the critical size of defect. (3) Considering the opening and closure behavior of fatigue crack, the defect shape results in various crack opening displacement, while it does not affects the fatigue limit level of medium carbon steel with spheroidized cementite structure. (4) The critical length of the non-propagation crack of smooth specimen is the same as critical size of defect in transient area which determines threshold condition in steel with spheroidized cementite structure.

  • PDF

구상화 열처리된 고탄소강의 미끄럼 마멸 거동에 미치는 시멘타이트 형상과 페라이트 기지조직의 영향 (The Effect of Cementite Morphology and Matrix-ferrite Microstructure on the Sliding Wear Behavior in Spheroidized High Carbon Steel)

  • 허하리;권혁우;구본우;김용석
    • 소성∙가공
    • /
    • 제25권2호
    • /
    • pp.96-101
    • /
    • 2016
  • The current study was conducted to elucidate the effect of cementite morphology and matrix-ferrite microstructure on sliding wear behavior in spheroidized high carbon (1wt. % C) steel. The high carbon steel was initially heat treated to obtain a full pearlite or a martensite microstructure before the spheroidization. The spheroidizing heat treatment was performed on the full pearlitic steel for 100 hours at 700℃ and tempering was performed on the martensitic steel for 3 hours at 650℃. A spheroidized cementite phase in a ferrite matrix was obtained for both the full pearlite and the martensite microstructures. Sliding wear tests were conducted using a pin-on-disk wear tester with the heat treated steel as the disk specimen. An alumina(Al2O3) ball was used as the pin counterpart during the test. After the spheroidizing heat treatment and the tempering, both pearlite and martensite exhibited similar microstructures of spheroidized cementite in a ferrite matrix. The spheroidized pearlite specimens had lower hardness than the tempered martensite; however, the wear resistance of the spheroidized pearlite was superior to that of the tempered martensite.

탄소강의 초석페라이트와 시멘타이트 구상화가 미끄럼마멸 거동에 미치는 영향 분석 (Effect of Pro-eutectoid Ferrite and Cementite-spheroidization on the Sliding Wear Resistance of Carbon Steels)

  • 허하리;권혁우;김명곤;김용석
    • 소성∙가공
    • /
    • 제23권6호
    • /
    • pp.345-350
    • /
    • 2014
  • The current study elucidates the effects of cementite spheroidization and pro-eutectoid ferrite on the sliding wear resistance in medium carbon (0.45wt%C) and high carbon (1wt%C) steels. Both steels were initially heat treated to obtain a fully pearlite or ferrite + pearlite microstructure. Spheroidizing heat treatments were performed on both steels to spheroidize the pearlitic cementite. Sliding wear tests were conducted using a pin-on-disk wear tester with the steel specimens as the disk and an alumina ($Al_2O_3$) ball as the pin. The sliding wear tests were carried out at room temperature in air with humidity of $40{\pm}2%$. Adapted sliding distance and applied load was 300m and 100N, respectively. Sliding speed was 0.1m/s and the wear-track radius was 9 mm. Worn surfaces and cross-sections of the wear track were examined using an SEM. Micro Vickers hardness of the wear-track subsurface was measured as a function of depth from the worn surface. Hardness and sliding-wear resistance of both steel decreased with increased spheroidization of the cementite. The decrease was more significant in the fully pearlitic steel (1wt%C steel). The steel with the pro-eutectoid ferrite showed relatively higher wear resistance compared to the spheroidized pearlitic steel.