• Title/Summary/Keyword: 구멍 가공

Search Result 185, Processing Time 0.024 seconds

An Experimental Study on Micro Drilling Using Step Feed (스텝이송방식을 이용한 미세구멍가공에 관한 실험적 연구)

  • Han, J.U.;Won, J.S.;Jung, Y.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.46-53
    • /
    • 1996
  • Micro drilling is one of the most important machining types and its necessity becomes more and more increasing in the whole field of industry. Micro drilling, however, has few the case of practical application, because it requests high techniques : manufacturing micro drill, treating chip, producting precise hole shape and progressing machining effeciency. Micro drilling has a technical problem: drill breakage from the lack of drill rigdity and the interuption of chip. It is, therefore, essential to select the proper cutting conditions and the step fed for the method solving the lack of rigidity and the interruption of chip. Especially, step feed is very efficient to avoid the breakage of drill, but bring about reducing of cutting efficiency. The study on step feed must be requested more than the present in the near future. The purpose of this paper is to investigate experimentally about cutting conditions which affect on tools and round errors and to estimate about the effect of step feed as well as optimal step feed size to solve the breakage of drill.

  • PDF

Evaluation of Role Flangeability of Steel Sheet with respect to the Role Processing Condition (가공조건에 따른 강판의 구멍확장성 평가)

  • Lee, J.S.;Kim, Y.K.;Huh, H.;Kim, H.K.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.359-362
    • /
    • 2006
  • In this paper, hole expanding tests are carried out in order to identify the effect of the hole process condition on the hole expanding ratio. Specimens with two different hole conditions are prepared: one is produced with punching process; and the other is reamed after punching to get smoother hole surface. The experimental results show that the facture mechanism and the hole expanding ratio are quite different with respect to the hole condition. The hole expanding ratio of a punched specimen is much smaller than that of a reamed one due to the difference of surface roughness and internal defects. For the thorough investigation of those effects, tensile tests of a specimen with a hole are performed. The fracture strain is obtained with different hole conditions and a finite element analysis of the hole flanging process carried out. The experimental results are confirmed and reevaluated by finite element analysis of the hole flanging process with ductile fracture criterion proposed.

  • PDF

초음파화학가공을 이용한 미세봉의 제작에 관한 연구

  • 윤재웅;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1990.04a
    • /
    • pp.53-61
    • /
    • 1990
  • 미세봉(Fine Rod) 혹은 매우 가는 바늘등의 미세가공은 전자산업계나 공구의 제작등에 있어서 최근 수요가 점차 증가하고 있다. 예를 들면 잉크젯 프린터 헤드의 대량생산에 필요한 펀치나 이온빔장치의 에미터전극(Emitter Electrode)등은 지름이 100 .mu. m이하이며, 방전가공을 이용 하여 미세구멍을 가공할 때 지름 수십마이크로미터인 전극의 가공은 문제가 되고 있다. 본 연구 에서는 미세봉의 제작을 위해 초음파화학가공(Ultrsonic-Assisted Chemical Machining)이라는 새로운 방법을 제시하였으며, 원통형의 가공물을 제작할 경우, 화학가공에 대한 기본적인 이론을 소개하고 그에 대한 실험을 수행한 후 그 결과에 대해 기술하였다.

세라믹스 초음파 가공의 고능률화를 위한 실험적 연구

  • 강재훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1990.04a
    • /
    • pp.62-66
    • /
    • 1990
  • 최근 미래지향적 첨단 산업 전반에 걸친 고부가가치 부품의 소재대체로 추진되고 있는 제 3의 소재 화인 세라믹스는 우수한 특성과 다양한 기능성으로 각광을 받고 있는 신소 재이나 고경도와 취성등으로 난삭재에 속한다. 화인 세라믹스는 제조법상 소결 공정을 필수로 하여그 수축현상을 피할 수 없으며, 고정도의 요소 부품화를 위해선 후가공을 필요로한다. 국내에선 일종의 세라믹스인 보석등의 미세구멍 가공등에만 국한되어 사용되어질뿐, 아직 화인 세라믹스의 형상 제거 가공등에는 그 가공법이 거의 적용되어 지지 않고 있는 초음파 가공에 대한 실험적 연구를 수행함으로써, 향후 최적 가공기술을 정립하는데 있어 지침이 되고자 한다.

A study of machining chracteristics effecting on laser focusing position in the ceramics microhole machining (세리믹 미세 구멍가공에서의 레이저 초점위치가 미치는 가공특성 연구)

  • Kim, Byoung-Yong;Lee, Kun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.513-518
    • /
    • 2001
  • [ $Al_[2}O_{3}$ ] ceramics are generally used as components in processing equipment, devices or machinery. But it's difficult to machining as being machanical because $Al_[2}O_{3}$ ceramics are brittle materials. This study described a basic study of the input parameters effect on the dimension of the microhole at the $Al_[2}O_{3}$ ceramics using Nd:YAG laser. Major input parameters are peak power, pulse frequency and pulse duration in the laser microhole machining of $Al_[2}O_{3}$ ceramics. We will get a smaller microhole and diameter rate by an appropriate peak power, pulse duration.

  • PDF

Micro-drilling of alumina green body with diamond abrasive drills (다이아몬드 입자 전착 드릴에 의한 알루미나 성형제의 미소구멍가공)

  • 이학구;방경근;김포진;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.926-931
    • /
    • 2002
  • Although ceramic plates with many micro-hales are used as MCP (Micro-channel plate) for electron amplification, catalytic converters, filters, electrical insulators and thermal conductors in integrated circuits, the drilling of micro-hales in the ceramics is difficult because of their low thermal conductivity, high hardness and brittleness. Therefore, in this work, the machining of ceramic green body fellowed by sintering of green body was employed fur fabricating ceramic plates with many micro-holes. The micro-drilling of alumina green body was performed with diamond abrasive WC drills, and the cutting force w.r.t. drilling times was measured for the determination of toot life. From the investigation of the wear of micro-drill tip w.r.t. drilling times, the wear mechanism of tip during micro-drilling of ceramic green body was suggested.

  • PDF

A Study on Micro-hole machining for Ceramics(A1$_2$O$_3$) Using Ultrasonic vibration (초음파 진동을 이용한 세라믹스의 미세 구멍 가공 기술)

  • 이봉구;최헌종;이석우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.988-992
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile application. The past decade has seen a tremendous in the use of ceramics in structural application. The excellent thermal, chemical and wear resistance of these material can be realized because of recent improvements in the overall strength and uniformity of advanced ceramics. Ultrasonic machining, in which abrasive particles in slurry with water are presented to the work surface in the presence of an ultrasonic-vibrating tool, is process which should be of considerable interest, as its potential is not limited by the electrical or chemical characteristics of the work material, making it suitable for application to ceramics. This paper intends to further the understanding of the basic mechanism of ultrasonic machining for brittle material and ultrasonic machining of ceramics based in the fracture-mechanic concept has been analyzed.

  • PDF

Glass Drilling using Laser-induced Backside Wet Etching with Ultrasonic Vibration (초음파 진동과 레이저 후면 에칭을 통한 유리 구멍 가공)

  • Kim, Hye Mi;Park, Min Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Laser beam machining has been known as efficient for glass micromachining. It is usually used the ultra-short pulsed laser which is time-consuming and uneconomic process. In order to use economic and powerful long pulsed laser, indirect processing called laser-induced backside wet etching (LIBWE) is good alternative method. In this paper, micromachining of glass using Nd:YAG laser with nanosecond pulsed beam has been attempted. In order to improve shape accuracy, combined processing with magnetic stirrer has been widely used. Magnetic stirrer acts to circulate the solution and remove the bubble but it is not suitable for deep hole machining. To get better effect, ultrasonic vibration was applied for improving shape accuracy.

A Study on Micro-hole Machining Technology using Ultrasonic vibration (초음파 진동을 이용한 미세구멍 가공기술)

  • 이석우;최헌종;이봉구;최영재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.231-234
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric and hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $\textrm{Al}_2\textrm{O}_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

Localized Electro-chemical Micro Drilling Using Ultra Short Pulses (초단펄스 전해 국부화를 이용한 미세구멍 가공)

  • 안세현;류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.213-220
    • /
    • 2003
  • By the localization of electro-chemical dissolution region, we succeeded in a few micrometer size hole drilling on stainless steel with the radial machining gap of about 1 ${\mu}{\textrm}{m}$. Tens of nanosecond duration voltage pulses were applied between WC micro-shaft and stainless steel in the 0.1 M $H_2SO_4$ solution. Pt balance electrode was used to drill the high aspect ratio micro-hole without generation of Cr oxide layer on the machined surface. The effects of applied voltage, pulse duration, and pulse period on localization distance were investigated according to machining time. We suggested the taper reduction technique especially brought up on blind-hole machining. High quality micro-holes with 8 ${\mu}m$ diameter with 20 ${\mu}m$ depth and 12 ${\mu}m$ diameter with 100 ${\mu}m$ depth were drilled on 304 stainless steel foil. The various hole shapes were also produced including stepped holes and taper free holes.