• 제목/요약/키워드: 구리 패드

검색결과 12건 처리시간 0.029초

DRAM Package Substrate Using Aluminum Anodization (알루미늄 양극산화를 사용한 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제47권4호
    • /
    • pp.69-74
    • /
    • 2010
  • A new package substrate for dynamic random access memory(DRAM) devices has been developed using selective aluminum anodization. Unlike the conventional substrate structure commonly made by laminating epoxy-based core and copper clad, this substrate consists of bottom aluminum, middle anodic aluminum oxide and top copper. Anodization process on the aluminum substrate provides thick aluminum oxide used as a dielectric layer in the package substrate. Placing copper traces on the anodic aluminum oxide layer, the resulting two-layer metal structure is completed in the package substrate. Selective anodization process makes it possible to construct a fully filled via structure. Also, putting vias directly in the bonding pads and the ball pads in the substrate design, via in pad structure is applied in this work. These arrangement of via in pad and two-layer metal structure make routing easier and thus provide more design flexibility. In a substrate design, all signal lines are routed based on the transmission line scheme of finite-width coplanar waveguide or microstrip with a characteristic impedance of about $50{\Omega}$ for better signal transmission. The property and performance of anodic alumina based package substrate such as layer structure, design method, fabrication process and measurement characteristics are investigated in detail.

A Study of the Interfacial Reactions between Various Sn-Ag-Cu Solder Balls and ENIG (Electroless Ni Immersion Gold) and Cu-OSP (Organic Solderability Preservative) Metal Pad Finish (다양한 조성의 Sn-Ag-Cu 합금계 무연 솔더볼과 ENIG(Electroless Ni Immersion Gold), Cu-OSP(Oraganic Solderability Preservertive) 금속 패드와의 계면 반응 연구)

  • Park, Yong-Sung;Kwon, Yong-Min;Son, Ho-Young;Moon, Jeong-Tak;Jeong, Byung-Wook;Kang, Kyung-In;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제14권4호
    • /
    • pp.27-36
    • /
    • 2007
  • In this study, we investigated the interfacial reactions between various Sn-Ag-Cu(SAC) solder alloys and ENIG(Electroless Ni Immersion Gold) and Cu-OSP(Organic Solderability Preservative) pad finish. In the case of the interfacial reaction between Sb added SAC solder and ENlf thinner P-rich Ni layer was formed at the interface. In the case of the interfacial reaction between Ni added SAC solder and Cu-OSP, the uniform $Cu_6Sn_5$, intermetallic compounds(IMCs) were formed and $Cu_6Sn_5$ grain did not grow after multiple reflows. Thinner $Cu_3Sn$ IMCs were farmed at the interface between $Cu_6Sn_5$ and Cu-OSP after $150^{\circ}C$ thermal aging.

  • PDF

Copper Ohmic Contact on n-type SiC Semiconductor (탄화규소 반도체의 구리 오옴성 접촉)

  • 조남인;정경화
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제10권4호
    • /
    • pp.29-33
    • /
    • 2003
  • Material and electrical properties of copper-based ohmic contacts on n-type 4H-SiC were investigated for the effects of the post-annealing and the metal covering conditions. The ohmic contacts were prepared by sequential sputtering of Cu and Si layers on SiC substrate. The post-annealing treatment was performed using RTP (rapid thermal process) in vacuum and reduction ambient. The specific contact resistivity ($p_{c}$), sheet resistance ($R_{s}$), contact resistance ($R_{c}$), transfer length ($L_{T}$), were calculated from resistance (RT) versus contact spacing (d) measurements obtained from TLM (transmission line method) structure. The best result of the specific contact resistivity was obtained for the sample annealed in the reduction ambient as $p_{c}= 1.0 \times 10^{-6}\Omega \textrm{cm}^2$. The material properties of the copper contacts were also examined by using XRD. The results showed that copper silicide was formed on SiC as a result of intermixing Cu and Si layer.

  • PDF

Fabrication of Laminated Multi-layer Flexible Substrate with Cu/Sn Via (Cu/Sn 비아를 적용한 일괄적층 방법에 의한 다층연성기판의 제조)

  • Lee H. J.;Yu Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제11권4호
    • /
    • pp.1-5
    • /
    • 2004
  • A multi-layer flexible substrate is composed of copper(Cu)/polyimide that are known as good electrical conductivity, and low dielectric constant, respectively. In this study. conductor line of $5{\mu}m$-pitch was successfully fabricated without non-uniform pattern shape by electroplating copper and coating polyimide on patterned stainless steel. For multi-layer flexible substrate, via holes were drilled by UV laser and filled with electroplating copper and tin. And then, the PI layer with vias and conductor lines was stripped from stainless steel substrate. The PI layers were laminated at once with careful alignment between layers. Solid state reaction between tin and copper during lamination formed the intermetallic compounds of $Cu_6Sn_5$($\eta$-phase) and $Cu_3Sn$($\epsilon$-Phase) and achieved a complete inter-connection by vertically positioning the plugged via holes on via pad. The via formation process has several advantages; such as better electrical property and lower cost than V type via and paste via.

  • PDF

Studies on the Interfacial Reaction between Electroless-Plated UBM (Under Bump Metallurgy) on Cu pads and Pb-Sn-Ag Solder Bumps (Cu pad위에 무전해 도금된 UBM (Under Bump Metallurgy)과 Pb-Sn-Ag 솔더 범프 계면 반응에 관한 연구)

  • Na, Jae-Ung;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • 제10권12호
    • /
    • pp.853-863
    • /
    • 2000
  • In this study, a new UBM materials system for solder flip chip interconnection of Cu pads were investigated using electroless copper (E-Cu) and electroless nickel (E-Ni) plating method. The interfacial reaction between several UBM structures and Sn-36Pb-2Ag solder and its effect on solder bump joint mechanical reliability were investigated to optimife the UBM materials design for solder bump on Cu pads. Fer the E-Cu UBM, continuous coarse scallop-like $Cu_{6}$ $Sn_{5}$ , intermetallic compound (IMC) was formed at the solder/E-Cu interface, and bump fracture occurred this interface under relative small load. In contrast, Fer the E-Ni/E-Cu UBM, it was observed that E-Ni effectively limited the growth of IMC at the interface, and the Polygonal $Ni_3$$Sn_4$ IMC was formed because of crystallographic mismatch between monoclinic $Ni_3$$Sn_4$ and amorphous E-Ni phase. Consequently, relatively higher bump adhesion strength was observed at E-Ni/E-Cu UBM than E-Cu UBM. As a result, it was fecund that E-Ni/E-Cu UBM material system was a better choice for solder flip chip interconnection on CU PadS.

  • PDF

A Study on Initial Strength of Sn-Pb Solder Joint (Sn-Pb 솔더 접합부의 초기 강도에 관한 연구)

  • 신영의;정승부
    • Journal of Welding and Joining
    • /
    • 제14권3호
    • /
    • pp.86-92
    • /
    • 1996
  • This paper presents the investigations on the initial strength and its variation of Sn-Pb solder joint using different lead frames, such as are 42 alloy lead and Cu alloy lead. As the result of the lack of initial strength at solder joints, whose pitch is from 0.3 to 0.4mm, short circuit often occured at the solder joint by thermal shock or external impact. Therefore, in this paper investigations were performed on the initial strength and its variation of Sn-Pb solder joint as well as fractured mode with using different lead frames.

  • PDF

Characterization Method for Testing Circuit Patterns on MCM/PCB Modules with Electron Beams of a Scanning Electron Microscope (MCM/PCB 회로패턴 검사에서 SEM의 전자빔을 이용한 측정방법)

  • Kim, Joon-Il;Shin, Joon-Kyun;Jee, Yong
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • 제35D권9호
    • /
    • pp.26-34
    • /
    • 1998
  • This paper presents a characterization method for faults of circuit patterns on MCM(Multichip Module) or PCB(Printed Circuit Board) substrates with electron beams of a SEM(Scanning Electron Microscope) by inducing voltage contrast on the signal line. The experimentation employes dual potential electron beams for the fault characterization of circuit patterns with a commercial SEM without modifying its structure. The testing procedure utilizes only one electron gun for the generation of dual potential electron beams by two different accelerating voltages, one for charging electron beam which introduces the yield of secondary electron $\delta$ < 1 and the other for reading beam which introduces $\delta$ > 1. Reading beam can read open's/short's of a specific net among many test nets, simultaneously discharging during the reading process for the next step, by removing its voltage contrast. The experimental results of testing the copper signal lines on glass-epoxy substrates showed that the state of open's/short's had generated the brightness contrast due to the voltage contrast on the surface of copper conductor line, when the net had charged with charging electron beams of 7KV accelerating voltages and then read with scanning reading electron beams of 2KV accelerating voltages in 10 seconds. The experimental results with Au pads of a IC die and Au plated Cu pads of BGA substrates provided the simple test method of circuit lines with 7KV charging electron beam and 2KV reading beam. Thus the characterization method showed that we can test open and short circuits of the net nondestructively by using dual potential electron beams with one SEM gun.

  • PDF

A Study on RFID Tag Recognition for Metal Pipe in Fish Cultivating Industry (양식용 철제 가두리에 대한 RFID 태그 인식률 개선에 관한 연구)

  • Park, Sung-Mee;Kim, Chae-Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제17권7호
    • /
    • pp.209-214
    • /
    • 2012
  • RFID(Radio Frequency IDentification) is an emerging technology which brings enormous productivity benefits in applications where objects have to be identified automatically. But despite of RFID's advantage, it is not easy to realize the RFID technology in business world. The failure to read RFID tags is the most urgent problem that should be solved for RFID application. Specially, in metal and liquid material, recognition rate of RFID tag is lower than others. Though some special tags for metal and liquid have been invented, it has not prevalent in business world on account of high price. In this paper, styrofoam pad is suggested to improve recognition rate of RFID tag for metal pipe which is used in fish cultivating industry. We makes experiment using Taguchi method and analyze the effects on styrofoam thickness, attachment location of tag, and angle of antenna.