• Title/Summary/Keyword: 구리 착물

Search Result 74, Processing Time 0.021 seconds

A study on the washing remediation of tailing waste and contaminated surrounding soil of a bandoned metal mines (폐금속광산 광미 및 주변 오염토양 세정에 관한 연구)

  • 이동호;박옥현
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.87-101
    • /
    • 1999
  • This study has been carried out to examine the feasibility of washing technique for reducing the heavy metal contamination level of tailing wastes and agricultural soil surrounding abandoned metal mines. Some organic acids with low molecular weight were used as washing solution. Initial contamination levels of copper and lead for some soil samples were found to exceed the standard levels of countermeasure and concern, and those of cadmium to approach the standard level of countermeasure. Experimental results using sequential extraction method revealed that more than half of copper and lead existing in tailing wastes are adsorbed forms available for plants. There are some proportional relationships between metal concentrations determined by using 0.1N HCI solution and those determined by sequential extractions. Citric acid was turned out to be superior to oxalic acid and acetic acid with low molecular weight in washing above three metals. When citric acid is used for washing heavy metals from soil, it is desirable to operate at pH less than 5.5 for better washing effect. Metal removal effect by citric acid solution has been proved to depend upon solution concentration and the mass ratio of solution to soil. Addition of SDS(Sodium Dodecyl Sulfate) to citric acid improved the washing effect of cadmium among three metal most significantly. while copper removal did not change. Washing technique using citric acid for removal of heavy metals from agricultural soil or tailing wastes is recognized to be an effective remediation method.

  • PDF

Determination of Iron in Seawater by Adsorptive Stripping Voltammetry (흡착 벗김 전압전류법에 의한 해수중 미량 철의 정량)

  • Czae, Myung-Zoon;Kim, Kyung;Kwon, Young-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.3
    • /
    • pp.186-190
    • /
    • 1995
  • A simple procedure, readily available at low cost with a sensitivity sufficient to determine trace levels of iron in seawater is proposed, which utilizes adsorptive accumulation of the iron/catechol complex on the mercury drop electrode in a borate medium of pH 8.0. Optimal conditions include a solution concentration of 2 mM catechol, 2.5 mM borate and a pH of 8.0, an accumulation potential of - 0.25 V is applied for 1∼3 min, and the potential scan is in the differential pulse mode. The limit of detection is 1.5 nM Fe using a preconcentration time of 3 min. The interference from copper can be eliminated and baseline slope is greatly improved, because its peak is well separated from that of iron in the proposed medium.

  • PDF

Donor Number of Mixed MeOH Solvents Using a Solvatochromic Cu(Ⅱ)-Complex (분광용매화 구리(II) 착물에 의한 메탄올 이성분 혼합용매들의 Donor Number)

  • Seoung-Kyo Yoo;Jin Sung Kim;Yeol Sakong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.796-801
    • /
    • 1992
  • An empirical Lewis basicity, DN, for eight mixed methanol solvents has been measured by the solvatochromic behavior of the [Cu(tmen)(acac)]$CIO_4$. The change of DN in mixed methanol solvents is not correlated with composition of the mixtures and divided into three groups: (1) dipolar aprotic solvents contribute mainly to the solvation of solute (MeOH-DMSO, MeOH-PY, MeOH-DMF), (2) two components of mixture contribute equally to the solvation of solute (MeOH-MeCN, MeOH-dioxane, MeOH-AC) and (3) methanol contributes entirely to the solvation of solute (MeOH-DCE, MeOH-TCE). The relationship between DN and Kamlet-Taft's $B_{KT}$ for mixed methanol solvents was found to agree well. These DN values also were a useful factor to analysis of reactivity for mixed methanol solvents.

  • PDF

Studies on Solvent Extraction and Analytical Application of Metal-dithizone Complexes(I). Separation and Determination of Trace Heavy Metals in Urine (Dithizone 금속착물의 용매추출 및 분석적 응용(제1보). 뇨중 흔적량 중금속 원소의 분리 정량)

  • Jeon, Moon-Kyo;Choi, Jong-Moon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.336-344
    • /
    • 1996
  • The extraction of trace cobalt, copper, nickel, cadmium, lead and zinc in urine samples of organic and alkali metal matrix into chloroform by the complex with a dithizone was studied for graphite furnace AAS determination. Various experimental conditions such as the pretreatment of urine, the pH of sample solution, and dithizone concentration in a solvent were optimized for the effective extraction, and some essential conditions were also studied for the back-extraction and digestion as well. All organic materials in 100 mL urine were destructed by the digestion with conc. $HNO_3$ 30 mL and 30% $H_2O_2$ 50 mL. Here, $H_2O_2$ was added dropwise with each 5.0 mL, serially. Analytes were extracted into 15.0 mL chloroform of 0.1% dithizone from the digested urine at pH 8.0 by shaking for 90 minutes. The pH was adjusted with a commercial buffer solution. Among analytes, cadmium, lead and zinc were back-extracted to 10.00 mL of 0.2 M $HNO_3$ from the solvent for the determination, and after the organic solvent was evaporated, others were dissolved with $HNO_3-H_2O_2$ and diluted to 10.00 mL with a deionized water. Synthetic digested urines were used to obtain optimum conditions and to plot calibration-eurves. Average recoveries of 77 to 109% for each element were obtained in sample solutions in which given amounts of analytes were added, and detection limits were Cd 0.09, Pb 0.59, Zn 0.18, Co 0.24, Cu 1.3 and Ni 1.7 ng/mL, respectively. It was concluded that this method could be applied for the determination of heavy elements in urine samples without any interferences of organic materials and major alkaline elements.

  • PDF