• Title/Summary/Keyword: 구리 나노 입자

Search Result 48, Processing Time 0.023 seconds

Synthesis of Cu Sintering Paste Using Growth of Nanofiber on Cu Microparticles Mixed with Formic Acid (포름산 혼합 나노섬유 성장 구리마이크로입자를 이용한 구리 소결 페이스트 합성)

  • Young Un Jeon;Ji Woong Chang
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.96-99
    • /
    • 2024
  • A sintering paste for bonding copper plates was synthesized using Cu formate nanofibers on Cu microparticles, mixed with formic acid. Copper oxide nanofibers of 10 ㎛ grown at 400 ℃ on Cu microparticles on the surface were transformed into copper formate nanofibers through the mixing of formic acid. Compared to Cu bulk particles or nanoparticles, Cu formate on Cu microparticles decomposed into metallic Cu at a lower temperature of 210 ℃, facilitating the sintering of copper paste. The growth of nanofiber on Cu microparticles allowed for an increase in the reaction rate of formation to copper formate, aggregating surface area, and decomposition rate of copper formate, resulting in fast sintering.

Antibacterial Effect of Multi-walled Carbon Nanotubes Decorated with Copper Nanoparticles (구리나노입자가 장식된 다중벽 탄소나노튜브의 항균효과)

  • Seo, Yeong-Min;Choe, Jong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.2-118.2
    • /
    • 2016
  • 몇몇의 박테리아들은 바이오필름을 형성하여 그들 스스로를 보호한다. 하지만 바이오필름으로 인해 악취와 질병 등의 문제가 많이 발생되고 있기 때문에 바이오필름을 형성하는 박테리아의 성장을 효율적으로 억제하기 위해 은 나노, 구리 나노입자들이 포함된 다양한 나노스케일의 재료들에 대한 연구가 활발히 진행되어오고 있다. 이들 연구의 주된 목표는 체내에서 독성은 나타내지 않으면서 항균성을 증가시키는 것에 있다. 특히, 구형으로 이루어진 나노입자와 높은 종횡비를 가지는 탄소나노튜브와 같이 차원이 다른 나노물질들의 복합체들은 세포독성을 최소화하면서 특정 박테리아에 대한 항균성을 향상시킬지도 모른다. 이번 연구에서는, 산 처리된 탄소나노튜브에 화학적인 방법을 이용하여 구리 이온을 각각 환원시켜 구리 나노-탄소나노튜브 복합체를 합성하였다. 이들 복합체는 transmission electron microscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy 를 이용하여 특성이 분석되었고 Methylobacterium spp., Sphingomonas spp. 와 E. coli 에 대하여 항균성이 평가되었다. 추가적으로 구리 나노-탄소나노튜브 복합체는 human fibroblast cells 에 대하여 세포독성이 평가되었고 제작된 마이크로칩 안에 형성된 바이오필름의 성장억제효과가 평가되었다. 결과적으로, 구리 나노-탄소나노튜브 복합체에서 바이오필름을 형성하는 Methylobacterium spp. 에 대하여 특이적으로 항균성을 나타냈으며 바이오필름이 형성된 마이크로칩에서 바이오필름을 제거 하는 것이 확인되었다.

  • PDF

Preparation of Copper Nanoparticles Protected by Chemisorption via Thiol Group (Thiol기의 화학흡착을 이용한 구리 나노입자의 제조)

  • Kim, Jung-Teag;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1069-1074
    • /
    • 2008
  • In this work, we made a study for the 3D SAM formation of octanethiol, decanethiol, and dodecanethiol on copper nanoparticles and we verified stability of the copper particle depending on the ratio of dodecanethiol to copper. The reaction was performed in a one-phase system under nitrogen atmosphere and the thiolated copper particles could be obtained by centrifugation. We could confirm that the nanoparticles consisted of a spherical shape of 3~6 nm from TEM images. FT-IR, XPS and TGA results showed that alkanethiols were chemisorbed via thiol group and the packing density of the alkanethiols on copper surface increased with the alkyl chain lengths. XRD patterns gave us useful information about superlattice formations. Finally, $Cu_2O$ was formed when the molar ratio of dodecanethiol to copper is less than unity and copper nanoparticles formed more compact 3D SAMs when the molar ratio of dodecanethiol to copper was 1.25.

Synthesis of CuO nanoparticles by liquid phase precursor process (액상프리커서법에 의한 산화구리(CuO) 나노 입자의 합성)

  • Seong-Whan Shinn
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.855-859
    • /
    • 2023
  • Copper oxide (CuO) nanoparticles were successfully synthesized using a precursor in which industrial starch was impregnated with an aqueous solution of copper (II) nitrate trihydrate. The microstructure of the precursor impregnated with an aqueous solution of copper nitrate trihydrate was confirmed with a scanning electron microscope (SEM), and the particle size and the crystal structure of the copper oxide particles produced as the temperature of the heat treatment of the precursor increased was analyzed by X-ray diffraction (XRD) and the scanning electron microscope (SEM). As a result of the analysis, it was confirmed that the temperature at which the organic matter of the precursor is completely thermally decomposed is 450-490℃, and that the size and crystallinity of the copper oxide particles increased as the heat treatment temperature increased. The size of the copper oxide particles obtained through heat treatment at 500-800℃ during 1 hour was 100nm~2㎛. It was confirmed that the copper oxide crystalline phase is formed at a heat treatment temperature of 400℃, and only the copper oxide single phase existed up to 800℃. And it was also confirmed that the size of particles produced increased as the calcination temperature increased.

Synthesis and Characterization of Copper Nanoparticles by Solution Plasma Processing (유체 플라즈마 공정을 활용한 구리 나노입자의 합성 및 특성 연구)

  • Kim, Seong-Min;Kim, Seong-Cheol;Jin, Sang-Hun;Yuk, Guk-Jin;Nam, Sang-U;Kim, Jeong-Wan;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.167-167
    • /
    • 2013
  • 유체 플라즈마 공정(SPP)은 고에너지를 가지는 플라즈마를 유체 내에 발생시키는 공정으로서 나노유체 및 촉매 물질 제조 등 여러 가지 응용분야에 적용할 수 있다. 본 연구에서는 SPP를 이용하여 구리 나노입자를 합성하였고 방전시간과 전원공급장치의 변화에 따른 구리 나노입자의 특성과 구리 나노유체의 열전도도을 분석하였다.

  • PDF

Fabrication of Nano-sized Core-Shell Transition Metal/Oxides by Selective Oxidation (선택적 산화에 의한 코어-쉘 구조의 전이금속/산화물 나노 입자 제조)

  • Choe, U-Seong;Choe, Seung-Mok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.99.2-99.2
    • /
    • 2017
  • 전이금속 산화물은 비교적 높은 용량 (700~1000 mAh/g)을 갖기 때문에 차세대 리튬전지용 음극으로서 많은 연구가 진행되어 왔다. 나노 코어-쉘 구조의 다공성 전이금속/전이금속 산화물 구조는 높은 비 표면적의 산화물과 높은 전기전도성을 가지는 금속 코어로 구성되어 고효율 리튬전지에 적용가능하다. 본 연구에서는 구리 소재 상에 나노코어구조의 구리/코발트 입자를 전기화학적으로 석출시킨 후 구리의 산화가 일어나지 않는 전해질/전위 조건에서 코발트만 선택적으로 산화시켜 코어-쉘 구조의 다공성 전이금속/전이금속 산화물 구조를 얻을 수 있었다. 제조된 나노 코어-쉘 구조의 다공성 전이금속/전이금속 산화물 입자를 리튬전지의 음극으로 사용하여 매우 우수한 충/방전 안정성을 나타냄을 확인할 수 있었다.

  • PDF

Non-Enzymatic Glucose Sensor Based on a Copper Oxide Nanoflowers Electrode Decorated with Pt Nanoparticles (백금 나노입자가 분산된 3차원 산화구리 나노구조체 기반의 글루코스 검출용 비효소적 전기화학 센서 개발)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.705-710
    • /
    • 2018
  • An electrochemical glucose sensor with enzyme-free was fabricated using Pt nanoparticles (Pt NPs) decorated CuO nanoflowers (CuO NFs). 3-D CuO nanoflowers film was directly synthesized on Cu foil by a simple hydrothermal method and Pt NPs were dispersed on the petal surface of CuO NFs through electrochemical deposition. This prepared sample was noted to Pt NPs-CuO NF. Morphology of the Pt NPs-CuO NFs layer was analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The electrochemical properties and sensing performances were investigated using cyclic voltammetry (CV) and chronoamperometry (CA) under alkaline condition. The sensor exhibited a high sensitivity, wide liner range and fast response time. Its excellent sensing performance was attributed to the synergistic effect of the Pt NPs and CuO nanostructure.

Effects of Surface Roughness on Contact Angle of Nanofluid Droplet (표면조도가 나노유체 액적의 접촉각에 미치는 영향)

  • Kim, Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.559-566
    • /
    • 2013
  • The effects of solid surface roughness on the contact angle of a nanofluid droplet were experimentally investigated. The experiments were conducted using the solid surface of a 10 mm cubic copper block and the nanofluid of water mixed with CuO nanoparticles. The experimental results showed that the contact angles of nanofluid droplets were lower than those of water droplets and that the contact angle of the nanofluid droplet increased with the solid surface roughness. Furthermore, it was found that the contact angles of water droplets on the solid surface quenched by both water and the nanofluid were lower than those of water droplets on the pure solid surface. However, significant differences were not observed between the contact angles on the solid surfaces quenched by water and the nanofluid.

Theoretical Analysis of Heat Pipe Thermal Performance According to Nanofluid Properties (나노유체 특성에 따른 히트파이프 성능해석)

  • Lim, Seung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.599-607
    • /
    • 2015
  • In this study, we theoretically investigate the thermal performances of heat pipes that have different nano-fluid properties. Two different types of nano-particles have been used: $Al_2O_3$ and CuO. The thermal performances of the heat pipes are observed for varying nano-particle aggregations and volume fractions. Both the viscosity and the conductivity increase as the volume fraction and the aggregation increase, respectively. Increasing the volume fraction helps increase the capillary limit in the well-dispersed condition. Whereas, the capillary limit is decreased under the aggregate condition, when the volume fraction increases. The dependence of the heat pipe thermal resistance on the volume fraction, aggregation, and conductivity of the nano-particles is analyzed. The maximum thermal transfer of the heat pipe is highly dependent on the volume fraction because of the high permeability of the heat pipe. For the proposed heat pipe, the optimum volume fraction of the nano-particle can be seen through 3D graphics.