• Title/Summary/Keyword: 구리함유 녹색광물

Search Result 3, Processing Time 0.018 seconds

Mineralogical Characteristics and Provenance of Cu-bearing Green Minerals Used as Traditional Pigments (전통 안료로 사용된 구리함유 녹색광물의 광물학적 특성과 산지추정)

  • Do, Jin-Young;Jung, Jongmee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.123-135
    • /
    • 2018
  • This study tried to find the clue to Seokrok province by comparing Seokrok used in painting culture properties with Seokrok ore from domestic occurrence and imported Seokrok ore. To this end, chemical and mineralogical characteristics of painting cultural properties were identified with portable X-ray Florescence (p-XRF), micro X-ray diffraction (micro XRD) and SEM/EDS Analysis. To obtain Pb isotopic ratio, the Pb contained in Seokrok has been analyzed with Thermal Ionization Mass Spectrometer. Atacamite (or botallackite) and small quantity of brochantite were identified from Seokrok in Dancheong, and malachite was also identified from Buddhist painting besides those two ingredients. Without distinction of type, most Seokrok used in painting cultural properties is atacamite composed of Cu and Cl. From Pb isotope analysis, it was found that Seokrok in painting cultural properties was closer to that of north Korea, north China and Japan than south Korea as in regional division for East North Asia suggested by Mabuchi. The Pb isotopic ratio of domestic green mineral belongs to the distribution of Seokrok inside the painting cultural properties but imported malachite showed considerably difference. Considering the fact that atacamite, the main mineral of Seokrok in painting cultural properties is rarely produced from southern mine of the Korean Peninsula and the result of Pb isotope analysis.

Occurrence and Mineralogical Properties of Green-Blue Inorganic Pigments in Korea (국내 녹색-청색계열 무기안료의 산출과 광물학적 특성)

  • Jeong, Gi Young;Cho, Hyen Goo;Do, Jin Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.33-46
    • /
    • 2018
  • Traditional inorganic pigments applied to dancheong, buddhist painting, and wall painting were produced from natural minerals which were later replaced by synthetic pigments, resulting in the loss of the recipe to prepare mineral pigments. This study examined the domestic occurrence and mineralogical characteristics of green and blue mineral pigments required for the conservation of cultural heritage. Cuprous green-blue mineral pigments were found as the weathering products of waste dumps and ores of abandoned Cu-Pb-Zn sulfide mines. Mineralogical analyses using X-ray diffraction and scanning electron microscopy identified diverse hydrous copper sulfate pigments of green (brochantite and devilline) and blue color (linarite, bechererite, and schulenbergite) with minor green pigments of antlerite and atacamite commonly associated with cerussite, smithsonite, anglesite, and cuprite. Noerok, a green silicate pigment, replaced the fractured basalt lava. Celadonite was responsible for the green color of Noerok, closely associated with opal in varying ratio. Glauconite, green silicate pigment, was identified in the Yellow Sea sediments. Malachite and azurite, the most important green and blue pigments of Korean cultural heritage, were not identified in this study.

A Study on the Characteristics of Verdigris Manufactured by Acid Corrosion Method (산부식법으로 제조한 동록안료의 특성에 관한 연구)

  • Kang, Yeong Seok;Mun, Seong Woo;Lee, Sun Myung;Jeong, Hye Young
    • Journal of Conservation Science
    • /
    • v.36 no.3
    • /
    • pp.178-186
    • /
    • 2020
  • Verdigris is a traditional artificial pigment reported on old research papers and according to the methods mentioned in the literature, it is manufactured by the corrosion of copper or copper alloys using vinegar and by further scraping the generated rust. Since the Three Kingdoms Period, various household products with copper alloys, such as bronze and brass, have been used, and pigment analysis of these cultural heritage items has revealed the presence of tin, zinc, lead, and copper in green pigments. Based on these data, five types of verdigris were prepared from copper and copper alloys, and analyzed. the analysis results revealed a bluish green pigmentation, and the chromaticity, particle shape, and oil absorption quantity of each verdigris differed based on the type of copper alloy used in its preparation. The main components of verdigris are Cu, Sn, Zn and Pb, and their proportions depended on the type of copper alloy used during manufacturing. However, the main constituent mineral of the pigments is the same as 'hoganite[Cu(CH3COO)2·H2O]', regardless of the copper alloy used. The result of accelerated weathering test for stability evaluation revealed that verdigris was discolored rapidly, thereby indicating that its stability was low, in particular, the pigments comprising lead presented relatively lower stability.