• Title/Summary/Keyword: 구리리본

Search Result 6, Processing Time 0.02 seconds

Recovery of Copper from Spent Photovoltaic Ribbon in Solar Module (폐태양전지(廢太陽電池)용 솔라리본으로부터 구리회수(回收)에 관한 연구(硏究))

  • Lee, Jin-Seok;Jang, Bo-Yun;Kim, Joon-Soo;Ahn, Young-Soo;Kang, Gi-Hwan;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.50-55
    • /
    • 2013
  • The recovery of copper from spent photovoltaic ribbon was conducted using thermal treatment method at the range of temperature of $300^{\circ}C$ to $600^{\circ}C$ under inert atmosphere. The coating layer consisted of lead of 68.99 wt.% and tin of 31.21 wt.% was melted down at elevated temperatures and was collected on the bottom of crucible. The chemical composition of copper ribbon after thermal treatment was analyzed by ICP-MS (Inductively coupled plasma mass spectrometry) and the purity of copper was found to be obtained up to about 96 wt.% regardless of temperatures. The cross-sectional area of the specimen was also examined by SEM (scanning electron microscopy) and EDX (energy dispersive X-ray microscopy).

Separation of Valuable Metal from Waste Photovoltaic Ribbon through Extraction and Precipitation

  • Chen, Wei-Sheng;Chen, Yen-Jung;Yueh, Kai-Chieh
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.69-77
    • /
    • 2020
  • With rapid increasing production and installation, recycling of photovoltaic modules has become the main issue. According to the research, the accumulation of waste modules will reach to 8600 tons in 2030. Moreover, Crystalline-silicon (c-Si) Photovoltaic modules account for more than 90% of the waste. C-Si PV modules contain 1.3% of weight of photovoltaic ribbon inside which contains the most of lead, tin and copper in the PV modules, which would cause environmental and humility problem. This study provided a valuable metal separation process for PV ribbons. Ribbons content 82.1% of Cu, 8.9% of Sn, 5.2% of Pb, and 3.1% of Ag. All of them were leached by 3M of hydrochloric acid in the optimal condition. Ag was halogenated to AgCl and precipitated. Cu ion was extracted and separated from Pb and Sn by Lix984N then stripped by 3M H2SO4. The effect of the optimal parameters of extraction was also studied in this essay. The maximum extraction efficiency of Cu ion was 99.64%. The separation condition of Pb and Sn were obtained by adjusting the pH value to 4 thought ammonia to precipitate and separate Pb and Sn. The recovery of Pb and Sn can reach 99%.

A Study on the Drying Performance of the Flux Adhered to Photovoltaic Ribbon (플럭스가 점착된 솔라 리본 건조 연구)

  • Cho, Nam-Cheol;Jeon, Young-Han;Han, Sang-Pil;Kim, Dong-Choon;Lee, Chae-Moon;Jeon, Taeg-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • The photovoltaic ribbon attached the flux reduces the solar module manufacturing process and the pollution. This paper presents an analytical method for solving the continuous flux drying system of photovoltaic ribbon. Also, some experiments of the drying of photovoltaic ribbon are carried out in order to design the drying system. Numerical results indicate the air temperature, the air velocity, the air pressure and the timewise temperature variation of ribbon during drying process. In case of the drier process length is short, 400mm, the photovoltaic ribbon is wet. Thus, another study of drying system is necessary to improve the drying ability. As a result, multi-stage drier system is proposed and shown to be good drying ability.

Numerical Fatigue Life Prediction of IGBT Module for Electronic Locomotive (수치해석을 이용한 전동차용 IGBT 모듈의 피로 수명 예측)

  • Kwon, Oh Young;Jang, Young Moon;Lee, Young-ho;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.103-111
    • /
    • 2017
  • In this study, the thermomechanical stress and fatigue analysis of a high voltage and high current (3,300 V/1200 A) insulated gate bipolar transistor (IGBT) module used for electric locomotive applications were performed under thermal cycling condition. Especially, the reliability of the copper wire and the ribbon wire were compared with that of the conventional aluminum wire. The copper wire showed three times higher stress than the aluminum wire. The ribbon type wire showed a higher stress than the circular type wire, and the copper ribbon wire showed the highest stress. The fatigue analysis results of the chip solder connecting the chip and the direct bond copper (DBC) indicated that the crack of the solder mainly occurred at the outer edge of the solder. In case of the circular wire, cracking of the solder occurred at 35,000 thermal cycles, and the crack area in the copper wire was larger than that of the aluminum wire. On the other hand, when the ribbon wire was used, the crack area was smaller than that of the circular wire. In case of the solder existing between DBC and base plate, the crack growth rate was similar regardless of the material and shape of the wire. However, cracking occurred earlier than chip solder, and more than half of the solder was failed at 40,000 cycles. Therefore, it is expected that the reliability of the solder between DBC and base plate would be worse than the chip solder.

Fabrication and Magnetic Properties of Ultrathin Co-based Amorphous Alloy (코발트계 극박형 비정질합금의 형성과 자기적 성질)

  • 노태환
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.255-260
    • /
    • 1998
  • Fabrication condition and magnetic properties of ultrathin Co-based amorphous alloy have been investigated. When the ejection gas pressure was lower than 0.05 kgf/$\textrm{cm}^2$ at the roll speed of 55 m/s, ultrathin ribbons with the thickness less than 10 ${\mu}{\textrm}{m}$ were successfully obtained. The ribbon thickness decreased linearly with the decrease in ejection pressure. Moreover the significant decrease in ribbon width was accompanied with the decrease of thickness in the range of ejection pressure to form an ultrathin ribbon. This behavior was attributed to the decrease of effective ejection pressure in the both end-sides of rectangular nozzle due to the larger friction between molten metal and nozzle wall. The effective permeability at low frequency (1 kHz) decreased largely with the decrease in ribbon thickness, while the coercive force increased with the thickness decrease. It was considered that these behaviors were due to the enhancement of surface effect leading to the suppression of wall motion. However effective permeability at high frequency (1 MHz) increased with the decrease in ribbon thickness, and this was ascribed to the easier magnetization rotation owing to the reduction of eddy current.

  • PDF

Studies on the Conducion path and Conduction Mechanism in undeped polycrystalline Diamond Film (도핑되지 않은 다이아몬드 박막의 전기전도 경로와 전도기구 연구)

  • Lee, Bum-Joo;Ahn, Byung-Tae;Lee, Jae-Kab;Baek, Young-Joon
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.593-600
    • /
    • 2000
  • This paper investigated the conduction path and conduction mechanism in undoped polycrystalline diamond thin films deposited by microwave chemical vapor deposition. The resistances measured by ac impedance spectroscopy with different directions can not be explained by the previously-known surface conduction model. The electrodeposition of Cu and electroetching of Ag experiments showed that the conduction path is the grain boundaries within the diamond films. The electodeposition of Cu with an insulating surface layer further proved that the main conduction path in polycrystalline films in the grain boundaries. The film with high electrical conductivity has low activation energy of 45meV and higher dangling bond density. By considering the results and surface C chemical bonds, the H-C-C-H bonds at surface and in grain boundaries might be the origin of high conductivity in undoped diamond films.

  • PDF