본 논문에서는 다수의 Landsat 영상을 이용하여 구름지역을 보정한 영상을 제작하였다. 비슷한 시기에 취득된 다수의 영상에서 구름을 제거하고, 구름이 제거된 부분을 다른 영상의 온전한 화소값을 기준으로 복원함으로써 효과적으로 구름지역 보정 영상을 제작할 수 있었다. 제작된 영상은 구름 때문에 식별이 불가능한 지역을 크게 감소시켰으며, 주기적인 위성영상의 취득이 어려운 여건을 개선하는 한편, 대규모 지역의 변화탐지 및 영상분류 등 다양한 분야에 활용될 것이다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.10a
/
pp.261-263
/
2009
본 논문에서는 퍼지 기법을 이용하여 구름의 종류를 분석하는 방법을 제안한다. 제안된 방법은 각각 영상에 대해 R채널의 임계치를 적용하여 잡음을 제거하며, 잡음 영역이 제거된 각각의 근적외 영상과 가시 영상의 반사 특성 및 근적외 영상과 적외 영상의 방출 특성의 특징을 구한 후, 각각의 임계치를 적용하여 1차적으로 구름을 판별한다. 1차적으로 구름 판별에서 제외된 영역에 대해서는 가시 및 적외 영상의 R 채널 값을 퍼지 기법에 적용하여 2차적으로 구름의 종류를 판별한다. 1차적으로 판별된 구름 영역과 2차적으로 판별된 구름 영역을 합성하여 최종 구름 영역을 도출한다. 제안된 방법을 실험한 결과, 기존의 구름 분류 방법보다 제안된 방법이 구름 분류의 성능이 개선된 것을 확인하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.05a
/
pp.355-359
/
2009
본 논문에서는 퍼지 기법을 이용하여 구름의 종류를 분석하는 방법을 제안한다. 본 논문에서는 가시 영상과 적외 영상을 대상으로 육지 영역은 RGB 컬러 정보 중에 G 채널 값의 수치가 높고, 바다영역에서는 B 채널 값의 수치가 높다는 정보를 이용한다. 이 정보를 이용하여 육지 영역에서는 R과 B 채널 값을 적용하고, 바다 영역에서는 R과 G 채널 값을 적용한다. 가시 영상과 적외 영상에서 임계치를 적용하여 잡음(구름 이외의 영역)을 제거하고, 잡음을 제거한 영상에서 육지 영역과 바다 영역을 구분한 후, 각 R, G, B 채널 정보를 퍼지 기법에 적용하여 구름 영역을 판별한다. 그리고 가시영상과 적외 영상에 모두 포함된 구름 영역에 대해서는 두 영상을 합성하여 구름을 판별한다. 제안된 기법을 구름 분류에 적용한 결과, 제안된 방법이 기존의 양자화를 적용한 방법보다 구름의 분류 성능이 개선된 것을 확인하였다.
Since PAN(panchromatic) and MS(multispectral) imagery of pushbroom scanner have the offset between PAN and MS CCD(charge coupled device) in the focal plane, PAN and MS images are acquired at different time and angle. Since clouds are fast moving objects, they should lead mis-registration problem with wrong matching points on clouds. The registration of cloudy imagery to recognize and remove the contamination of clouds can be categorized into three classes: (1) cloud is considered as nose and removed (2) employing multi-spectral imagery (3) using multi-temporal imagery. In this paper, method (1) and (3) are implemented and analysed with cloudy pushbroom scanner images.
Cloud removal is an essential image processing step for any task requiring time-series optical images, such as vegetation monitoring and change detection. This paper presents a two-stage cloud removal method that combines conditional generative adversarial networks (cGANs) with regression-based calibration to construct a cloud-free time-series optical image set. In the first stage, the cGANs generate initial prediction results using quantitative relationships between optical and synthetic aperture radar images. In the second stage, the relationships between the predicted results and the actual values in non-cloud areas are first quantified via random forest-based regression modeling and then used to calibrate the cGAN-based prediction results. The potential of the proposed method was evaluated from a cloud removal experiment using Sentinel-2 and COSMO-SkyMed images in the rice field cultivation area of Gimje. The cGAN model could effectively predict the reflectance values in the cloud-contaminated rice fields where severe changes in physical surface conditions happened. Moreover, the regression-based calibration in the second stage could improve the prediction accuracy, compared with a regression-based cloud removal method using a supplementary image that is temporally distant from the target image. These experimental results indicate that the proposed method can be effectively applied to restore cloud-contaminated areas when cloud-free optical images are unavailable for environmental monitoring.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.6
/
pp.1181-1187
/
2009
In this paper, we proposed a method to analyze kind of clouds using a fuzzy reasoning method. In the proposed method, we used the clues that G channel value is dominant from RGB color values in land areas and B channel value is dominant in the sea areas discovered by the analyses of both visible images and infrared images. By these information, R and B channel values are applied to land areas and R and G channel values are applied to the sea areas. Noise areas(areas except cloud areas) are removed from a visible image and an infrared image by a threshold value, and then land areas and the sea areas are discriminated from the noise removed image. Cloud areas are extracted from discriminated areas using R, G, B channel values and a fuzzy reasoning method, and finally kind of clouds is decided by combining same cloud areas included in both the visible image and the infrared image. In comparison with a conventional quantization method, we verified that the performance of cloud analysis by the proposed method is more efficient through experiments.
원격탐사 근적외선(NIR)과 Red 밴드의 반사도로부터 계산되는 정규식생지수(NDVI)는 구름에 오염된 곳에서는 실제보다 낮은 값으로 계산된다. 식생지수에서 구름오염 문제를 극복하는 기존의 대표적인 방법에는 보름 정도 장기간 식생지수 값 중에서 최대인 값을 취하는 MVC(Maximum Value Composite) 방법이 있다. 하지만 MVC 방법으로는 식생지수의 단기간 변동을 파악할 수 없으며, 장기간 계속 구름으로 오염된 곳은 잘못된 식생지수 값으로 계산되는 문제점이 있다. 가시광 RGB 자료로부터 snapshot 영상자료의 구름을 마스크(mask)하는 새로운 방법인 CIM(Color Index Manipulation) 알고리즘을 개발하였다. 이 알고리즘을 사용하면 snapshot 영상자료에서 구름에 오염된 곳은 제외하고 오염되지 않은 곳에 대한 식생지수를 계산할 수 있다. RGB 자료에 대한 정규색상지수 NCI (Normalized Color Index) 3개 성분을 $120^{\circ}$ 간격으로 벌어진 3개 축상의 좌표로 나타낸 후 이들 3개 값의 벡터합(vector sum) 정보를 이용하여 구름을 식별하는 CIM 방법으로 위성영상에서 두꺼운 구름과 않은 구름을 구분하여 식별할 수 있다. 이 구름식별 기법을 MODIS snapshot 위성영상 자료에 적용하여 한반도의 일별(daily) 식생지수 자료를 계산하였다. 그리고 수년간의 일별 식생지수 자료로부터 한반도 식생지수의 계절적 변동을 조사하였다.
Kim, Hyun-Suk;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
Proceedings of the KSRS Conference
/
2007.03a
/
pp.70-75
/
2007
2008년 12월에 우리나라 최초의 통신해양기상위성(Communications, Oceanography and Meteorology Satellite, COMS)이 발사될 예정이다. 통신해양기상위성의 영상데이터의 기하보정을 위하여 다음과 같은 연구를 수행하였다. 기상위성은 정지궤도상에 위치하여 전지구적인 영상을 얻는다. 영상의 전지구적인 해안선은 구름 등으로 가려져서 명확한 정보를 제공할 수 없게 된다. 구름 등으로 방해되지 않는 명확한 해안선 정보를 얻기 위하여 구름 추출을 한다. 실시간으로 기상정보를 얻는 기상위성의 특성상 정합에 전체 영상을 사용하면 수행시간이 다소 소요된다. 정합시 전체 영상에서 정합을 위한 후보점 추출을 위하여 GSHHS(Global Self-consistent Hierarchical High-resolution Shoreline)의 해안선 데이터베이스를 사용하여 211 개 의 랜드마크 칩들을 구축하였다. 이때 구축된 랜드마크 칩은 실험에 사용한 GOES-9의 위치 동경 155도를 반영하여 구축하였다. 전체 영상에서 구축된 랜드마크 칩들의 위치를 중심으로 구름추출을 수행한다. 전체 211 개의 후보점 중 구름이 제거된 나머지 후보점에 대하여 정합을 수행한다. 랜드마크 칩과 위성영상 간의 정합 중 참정합과 오정합이 존재하는데 자동으로 오정합을 검출하기 위하여 강인추정기법 (RANSAC, Random Sample Consensus)을 사용한다. 이때 자동으로 판별되어 오정합이 제거된 정합결과로 최종적인 기하보정을 수행한다. 기하보정을 위한 센서모델은 GOES-9 위성의 센서특정을 고려하여 개발되었다. 정합 및 RANSAC결과로 얻어진 기준점으로 정밀 센서모델을 수립하여 기하보정을 실시하였다. 이때 일련의 수행과정을 통신해양기상위성의 실시간 처리요구사항에 맞도록 속도를 최적화하여 진행되도록 개발하였다.
Kim, Byeong Hee;Kim, Yong;Han, You Kyung;Choi, Won Seok;Kim, Yong
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.32
no.2
/
pp.133-142
/
2014
Landsat is one of the popular satellites for observing land surface that is used in various areas including monitoring, detecting and classifying changes in land surface. However, shades, which cloud itself and its shadow, interrupted often clear observation and analysis of ground surface. For this reason, the process of removing shades and restoring original ground surfaces are critical for geospatial users. This study is planned to recommend a methodology for more accurate and clear images of Landsat-8 sensor, which provided two additional bands of costal/aerosol and cirrus. In fact, those bands are known as functioned effectively in detecting and restoring shades. Otsu's thresholding technique to detect clouds, we replaced those detective shades by using experimental and reference images. In accurate assessment, the overall accuracy and kappa coefficients were about 85% and 0.7128, respectively. This indicates that the proposed technique is effective for recovering the original land surface.
식생지수 시계열 자료를 이용한 식생 및 토지피복 모니터링을 수행하기 위해서는 구름으로 인한 누락 및 왜곡된 식생지수 문제를 먼저 해결해야만 한다. 특히 한반도와 같이 여름철 집중 호우기에 대부분의 영상에 구름이 존재하는 경우 이들 구름화소를 제거하거나 복원하지 않을 경우, 분석 결과에 상당한 왜곡이 발생하거나 특정 시기의 영상자료를 분석에 반영할 수 없는 경우가 발생하게 된다. HANTS 알고리즘은 이 같은 구름 화소 문제를 해결하기 위한 알고리즘으로 연중 식생지수의 변화는 비교적 단순한 반복적 주기함수의 형태를 가지므로 소수의 cos 함수를 이용한 푸리에 근사식으로 전체 연중 식생지수를 표현할 수 있다는 가정에서 출발한다. 이 때 구름화소로 인한 원식생지수와의 차이가 특정 임계값을 초과하였을 경우 해당 관측치를 근사과정에서 제외함으로써 구름의 영향을 받지 않은 식생지수 시계열 자료만을 이용하게 된다. 이 과정을 수행하기 위해서는 몇몇 제어변수의 설정이 필요한데, 본 연구에서는 한반도와 같이 특정 시기에 장기간 구름이 분포하는 상황에서 최적의 식생지수 복원을 위한 HANTS 알고리즘의 제어변수를 선정하고 재구축된 식생지수를 평가하였다. 이를 위한 실험으로 2002년 대전 지역의 MODIS Terra 식생지수 시계열 영상을 대상으로 HANTS 알고리즘을 주요 식생피복별로 적용해 보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.