• Title/Summary/Keyword: 구동성능예측

Search Result 130, Processing Time 0.028 seconds

Multi-Level Prediction for Intelligent u-life Services (지능형 u-Life 서비스를 위한 단계적 예측)

  • Hong, In-Hwa;Kang, Myung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.123-129
    • /
    • 2009
  • Ubiquitous home is emerging as the future digital home environments that provide various ubiquitous home services like u-Life, u-Health, etc. It is composed of some home appliances and sensors which are connected through wired/wireless network. Ubiquitous home services become aware of user's context with the information gathered from sensors and make home appliances adapt to the current home situation for maximizing user convenience. In these context-aware home environments, it is the one of significant research topics to predict user behaviors in order to proactively control the home environment. In this paper, we propose Multi-Level prediction algorithm for context-aware services in ubiquitous home environment. The algorithm has two phases, prediction and execution. In the first prediction phase, the next location of user is predicted using tree algorithm with information on users, time, location, devices. In the second execution phase, our table matching method decides home appliances to run according to the prediction, device's location, and user requirement. Since usually home appliances operate together rather than separately, our approach introduces the concept of mode service, so that it is possible to control multiple devices as well as a single one. We also devised some scenarios for the conceptual verification and validated our algorithm through simulations.

  • PDF

Signl processing method and diagnostic algorithm for arterial oxygen-saturation measument (산소포화도 측정을 위한 신호처리방법 및 계산 알고리즘)

  • 김수진;황돈연;전계진;이종연;정성규;윤길원
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.452-456
    • /
    • 2000
  • A measurement unit and signal processing algorithm have been developed for predicting arterial oxygen saturation noninvasively. The measurement set-up was composed of a probe including light source and photodetector, optical signal processing section, LED driving circuit, PC interface software for data acquisition and data processing software. Light from the LED's was irradiated onto the finger nail bed and transmitted light was measured at different wavelengths. An effective baseline correction method was developed and measured data were analyzed by using various data processing methods and prediction algOlithms. For performance evaluation, a pulse oximeter simulator (Bio- Tek Instrument Inc.) was used as reference. The best performance in terms of the correlation coefficient and the standard deviation was obtained under the following conditions; when the arterial signals were computed in terms of area rather than peak-valley difference, and when the algorithm calculating by $In(I_p/I_v)/I_{avr}$ value for pulsation waveform was used. In in vivo test, prediction was improved when the developed baseline correction method was used. In addition, wavelengths of 660 nm and 940 nm provided better linearity and precision than wavelengths of 660 nm and 805 nm. 05 nm.

  • PDF

Combustion Performance Tests of Fuel-Rich Gas Generator for Liquid Rocket Engine Using an Impinging Injector (충돌형 분사기 형태의 액체로켓엔진용 가스발생기 연소성능시험)

  • 한영민;김승한;문일윤;김홍집;김종규;설우석;이수용;권순탁;이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • The results of the combustion performance tests of gas generator which supplies hot gas into the turbine of turbo-pump for liquid rocket engine and uses LOx and kerosene as propellant are described. The gas generator consists of a injector head with F-O-F impinging injector, a water cooled combustion chamber, a gas torch igniter, a turbulence ring and an instrument ring. The effect of turbulence ring and combustion chamber length on performance of gas generator are investigated. The ignition and combustion at design point are stable and the pressure and gas temperature at gas generator exit meets the target. The turbulence ring installed at middle of chamber effectively mixes hot gas with cold gas and the effect of residence time of hot gas in gas generator on combustion efficiency is small. Test results show that the main parameter controlling the gas temperature at gas generator exit is overall O/F ratio.

Performance Assessment of a Temperature Control Unit used in a Lifecycle Testing System for LED Headlamps on Locomotives (철도차량용 LED전조등의 수명시험용 온도제어부의 성능평가)

  • Ohn, Jung-Ghun;Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.46-53
    • /
    • 2016
  • LED light sources have been known to have a long life and good energy efficiency compared to traditional light sources. Recently, headlamps using LED light sources have ensured the forward visibility and safe operation of high-speed rolling stock. However, assessing the lifespan of LED headlamps based on real test data is not easy because it depends on the multiple stress factors such as a fixed driving current, junction temperature, vibration and so on. Generally, LED headlamps have failed before their advertised life span mainly due to temperature. Thus, the performance assessment of a temperature control unit should be done before a life cycle test of LED headlamps. This study attempted to develop a prototype temperature control module for a lifecycle test system using a commercial LED headlight and verified the system through experiments.

A Study on Stability Improvement of Fuel Metering Unit for Air Breathing Engine (공기흡입식 추진기관용 연료조절밸브 시스템 안정성 향상에 관한 연구)

  • 이도윤;박종승;최현영;구자용
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.76-81
    • /
    • 2006
  • This paper deals with a fuel metering unit (referred to as FMU) for air breathing engine. The proposed FMU consists of a constant pressure drop valve and a metering valve, both of which are controlled by servovalve. Linear analysis derived from a nonlinear mathematical model of FMU is carried out to find major parameters on the system performance. Numerical results using established model of FMU were in good agreement with the experimental results. It is also shown that the system stability is improved by reducing the constant pressure drop at metering valve and applying the triangular orifice to constant-pressure-drop valve through the simulation and experiments.

Conceptual Design Study on Rocket Based Combined Cycle Engine (로켓 기반 복합사이클 엔진의 개념설계)

  • Kang, Sang Hun;Lee, Yang Ji;Yang, Soo Seok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.111-119
    • /
    • 2013
  • Conceptual design of RBCC (Rocket Based Combined Cycle) engine is performed through the thermodynamic cycle analysis. The engine is designed to take off at sea level and accelerate to Mach 8 at 30 km altitude. According to the flight speed, the engine operating modes are categorized into 3 modes : Ejectorjet (~ Mach 3), Ramjet (Mach 3~6), Scramjet (Mach 6~8). As a design result, the engine has a diameter of 1 m and a length of 6.7 m. In the prediction results, its maximum thrust is 16.5 ton. In Ramjet and Scramjet modes, design condition of the engine intake influence the engine thrust according to the flight speed.

Study on Characteristics of DBD Plasma Actuator as Design Parameters for Plasma Flow Control (플라즈마 유동제어를 위한 DBD 플라즈마 액츄에이터의 설계변수에 따른 특성 연구)

  • Yun, Su-Hwan;Kwon, Hyeok-Bin;Kim, Tae-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.492-498
    • /
    • 2012
  • Characteristics of DBD(Dielectric Barrier Discharge) plasma actuator as design parameters were investigated for plasma flow control. Flow velocity and power consumption of the DBD plasma actuator were measured according to the design parameters such as discharge voltage and frequency, gap, width and length of electrode, and the thickness of dielectric barrier. The flow velocity and power consumption increased as the discharge voltage and frequency increased. As the electrode gap increased, the flow velocity increased with decreasing the power consumption, whereas high voltage was required for the plasma discharge. The flow velocity increased as the upper-electrode width decreased, and as the lower-electrode width increased at the constant power consumption. The performance of the DBD plasma actuator can be estimated at the given discharge and geometry conditions.

Application of Distributed Rainfall-Runoff Model based Intensity-Duration-Quantity Curve for Unagaged Basin Flood warning (미계측 유역 홍수예보를 위한 분포형 강우-유출 모형 기반의 강우강도-지속시간-홍수량(IDQ) 곡선의 활용)

  • Kim, Jingyeom;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.645-645
    • /
    • 2015
  • 기존 홍수예보에 사용되는 일반적인 절차는 관측되는 강우를 이용하여 유역의 유출량을 계산하고 댐 저수량과 현 상황에서 발생할 수 있는 하천의 수위와 유량을 판단한 뒤 홍수예보 및 경보를 발령한다. 이러한 방법은 모형의 구동에 걸리는 시간으로 인한 의사결정 시간의 단축, 모형의 성능에 의존하는 홍수예측 결과 등의 단점이 존재하며, 관련 전문가가 상주하며 홍수 유무를 판단하고 상황을 전파해야하는 인적 재원이 필요하다. 본 연구에서는 분포형 강우-유출모형 기반의 강우강도-지속시간-홍수량(IDQ) 곡선을 활용하여 미계측 유역 홍수예보에 활용하는 기법을 평가하였다. 계측된 유역의 자료를 이용하여 분포형 모형의 검보정을 실시하고 하천의 예경보 홍수량에 준하는 한계강우량을 산정하였다. 이때. 다양한 지속시간의 강우를 적용하였으며 토양함수상태에 따른 IDQ 곡선을 산정하여 발생 가능한 여러 시나리오에 대비할 수 있는 홍수예보 기법을 제시하였다. 주요 홍수예경보지점에 적절한 IDQ 곡선을 보유하게 된다면 비전문가도 신속한 홍수예경보 의사결정이 가능하여 각 지자체와 유관기관에서 손쉽게 활용할 수 있으리라 판단된다.

  • PDF

A Similitude Study of Soil-Wheel System for Identifying the Dimension of Pertinent Soil Parameter(I) -Pull Prediction Analysis- (구동륜(驅動輪)의 성능예측(性能豫測)에 적합한 토양변수(土壤變數)의 차원해석(次元解析)을 위한 차륜(車輪)-토양(土壤) 시스템의 상사성(相似性) 연구(硏究)(I) -견인력(牽引力) 예측(豫測) 분석(分析)-)

  • Lee, K.S.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.2
    • /
    • pp.67-79
    • /
    • 1989
  • This study was conducted to investigate the applicability of true model theory for pull prediction in a powered lugged wheel-soil system and to examine the possibility of using principles of similitude in investigating the dimensions of soil parameters pertinent to a powered lugged wheel-soil system concerning the pull prediction. The following conclusions were derived from the study; 1) The pull of prototype wheels proved to be predicted by those of the model wheels for the range of the dynamic weight tested. The pull curves of models and prototype were respectively very similar in the shape. From this basic knowledge, it was enabled to apply the similitude theory to the performance prediction of the true model. 2) A conditional equation which can be used for the prediction of pull of prototype by model test was derived as follows. $n_f=n_1^{-b}$ where $n_f$ : force scale = $w/w_m$ $n_1$ : length scale = ${\ell}/{\ell}_m$ b : exponent on the length dimension of the soil property ${\alpha}$ The range of the numerical value of b, which was determined by the least square method, was found to be -2.0~-2.6. 3) Considering a relatively wide variation of b values in the pull prediction, b is considered to be a function of many variales. Thus it was concluded that there are several soil properties which are pertinent to the powered lugged-wheel-soil system concerning the pull prediction, and these soil properties may have the different effects on the pull of model and protytype wheels, to give the different dimension on the soil parameters.

  • PDF

A Study on the Blade Load Measurement of Partial-admission Turbine Cascade (충동형 터빈 캐스케이드의 깃 하중 측정에 관한 연구)

  • Lim, Dong-Hwa;Jang, Jin-Man;Lee, Eun-Seok;Kim, Jin-Han;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2007
  • An impulse turbine, which is a main component of a liquid rocket engine, needs to be a small size with light weight and generate large power. Since the impulse turbine is being operated under complicated supersonic conditions, flow analysis and performance prediction largely depend on CFD technique. In order to increase the reliability of the prediction code, however, it often requires an experimental data to compare. In this research a rotating turbine rotor with multiple blades is simulated with a two-dimensional stationary cascade to check the effect of major flow parameters. Mach number is measured at nozzle exit by using a pitot tube and the blade thrust was also measured with a load cell. The measured thrust coefficient and the power are compared well with the designed conditions, which proves the design procedures are properly taken.