• Title/Summary/Keyword: 구내방사선촬영

Search Result 48, Processing Time 0.022 seconds

A Study on the Reduction of Absorbed Dose through the Insertion of a Shielding Material in the Intraoralsensor of Dental Radiography (치과 방사선촬영 시 구내 센서 내 차폐체 삽입을 통한 피폭선량 감소 연구)

  • Kim, A Yeon;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.273-279
    • /
    • 2022
  • In order to reduce the absorbed dose given to the patient during dental radiography, a sensor that inserts a shield into the intraoralsensor was designed. Using the designed sensor, the change in absorbed dose depending on whether or not a shield was used was evaluated. The system used to evaluate the absorbed dose is VEX-S300C from Vatech, and the energy spectrum of X-rays was obtained through SPEKTR simulation based on the irradiation conditions of 65 kV, 3 mA, and 0.15 sec, and the number of photons for each energy was derived. After designing the system through Genat4 Application for Tomographic Emission(GATE) simulation, the energy spectrum obtained was used as a radiation source to calculate the absorbed dose. Lead was used for the shield, and simulations were performed at 0.1 mm thickness intervals from 0.1 mm to 0.5 mm was evaluated. In the case of using an X-ray field with a diameter of 60 mm, the decrease in absorbed dose according to the presence or absence of a shield decreased exponentially as the thickness of the shield increased. In addition, when a 20 mm × 30 mm field was used, the absorbed dose was significantly reduced even when no shield was used, and it was confirmed that the absorbed dose was further reduced when a shield was used.

Current status of dental intraoral imaging devices and radiographic safety management (치과 구내촬영 장비 현황과 방사선 안전 관리 실태 연구)

  • Kang, Eun-Ju;Hyeong, Ju-Hee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.16 no.2
    • /
    • pp.205-214
    • /
    • 2016
  • Objectives: The purpose of the study is to investigate the current status and radiographic safety management in Korea. Methods: A self-reported questionnaire was completed by 200 dental hygienists in Jeonbuk province from September 1, 2014 and October 31, 2014. The questionnaire consisted of general characteristics of the subjects, radiation knowledge, radiation safety management, and radiation exposure anxiety. Data were analyzed using SPSS 18.0 program. Results: Duration of clinical experience(r=0.142) and number of daily radiation shot(r=0.145) showed a positive correlation to radiation safety management, and a nrgative correlation to use of intraoral films and digital devices(r=-0.587). A logistic regression analysis was performed in order to evaluate the influence on radiography knowledge. The results showed that the factors had significant influences on the age group over 41 years old(OR 7.25; 95% CI 1.30-40.43) and those who took a position above team leader(OR 0.23; 95% CI 0.59-0.90). Conclusions: It is very important to have the safety management toward dental intraoral imaging and radiograpgic shot in the dental hygienists. Continuous efforts should be emphasized on radiographic safety management and behavior.

A Study of Radiation Dose Evaluation and Optimization Methods for Intra Oral Dental X-ray in Pediatric Patient (소아 구내촬영 시 방사선량 평가 및 최적화 방안에 대한 연구)

  • Lee, Hyun-Yong;Cho, Yong-In
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.195-203
    • /
    • 2021
  • Although intra oral dental x-ray is a lower dose than other radiological examinations, pediatric patients are known to have a higher risk of radiation damage than adults. For this reason, pediatric dental x-ray requires management of dose evaluation and imaging conditions during the examination. In this study, the dose calculation program ALARA-Dental(child/adult) was used to evaluate the organ dose and effective dose exposed to each examination site during intra oral imaging of children during dental radiographic examination, and dose analysis according to the imaging conditions was performed. As a result, the highest organ dose distribution was shown at 0.044 ~ 0.097 mGy in all are as of the mucous membrane of oral cavity except for the maxillary incisors and canines. Also, in the case of the thyroid gland, the maxillary canine and maxillary premolar examination showed 0.027 and 0.020 mGy, respectively, and the dose distribution was 15.4% to 70.0% higher than that of the mandibular examination. As for the effective dose calculated during intra oral imaging, the maxillary anterior and canine examinations showed the highest effective doses of 0.005 and 0.004 mSv, respectively, and the maxillary area examination showed a higher dose distribution on average than the mandible.

The Actual State and the Utilization for Dental Radiography in Korea (국내 치과방사선의 현황 및 이용 실태)

  • Shin, Gwi-Soon;Kim, You-Hyun;Lee, Bo-Ram;Kim, Se-Young;Lee, Gui-Won;Park, Chang-Seo;Park, Hyok;Chang, Kye-Yong
    • Journal of radiological science and technology
    • /
    • v.33 no.2
    • /
    • pp.109-120
    • /
    • 2010
  • The purpose of this study was first to analyze the utilization of dental examination through questionnaire to develop a diagnostic reference level of patient doses for dental radiography in korea. 77 dental institutions were classified into three groups: A group for the dental hospitals of the college of dentistry (11 institutions), B group for dental hospitals (30 institutions) and C group for dental clinics (36 institutions). The results were as follows : The mean numbers of unit chairs and medical staffs were 140.2, 15.3 and 5.8 sets, 112.6, 7.3 and 1.7 dentists, 3.1, 0.5 and no one radiologic technologists, and 19.7, 12.5 and 3.3 dental hygienists in A, B and C groups, respectively. The mean numbers of dental X-ray equipments were 14.64, 3.21 and 2.19 in A, B and C groups, respectively. Intraoral dental X-ray unit was used the most, the following equipments were panoramic, cephalometric, and cone-beam CT units. The most used X-ray imaging system was also digital system (above 50%) in all three groups. Insight dental film (Kodak, USA) having high sensitivity was routinely used for periapical radiography. The automatic processor was not used in many dental institutions, but the film-holding device was used in many dental institutions. The utilization rates of PACS in A, B and C groups were 90.9%, 83.3% and 16.7% respectively, and the PACS software program was used the most PiView STAR (Infinitt, Korea). The annual mean number of radiographic cases in one dental institution in 2008 for A group was 6.8 times and 21.2 times more than those for B and C groups, and periapical and panoramic radiographs were taken mostly. Tube voltage (kVp) and tube current (mA) for periapical radiography were similar in all three groups, but exposure time in C group was 12.0 times and 3.5 times longer than those in B and C groups. The amount of radiation exposure in C group, in which dental hygienists take dental radiographs, was more than those in other groups. The exposure parameters for panoramic radiography were similar in all three groups. In conclusion, the exposure parameters in dental radiography should be determined with reference level, not past experiences. Use of automatic processor and film-holding devices reduces the radiation exposure in film system. The quality assurance of dental equipments are necessary for the reduction of the patient dose and the improvement of X-ray image quality.

A literature review on expansion of dental hygienists' radiography operations (치과위생사의 방사선 촬영업무의 확대에 대한 문헌적 고찰)

  • Choi, Young-Suk;Kim, Jin-Kyoung;Jang, Jong-Hwa;Park, Yong-Duk
    • Journal of Korean society of Dental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.111-124
    • /
    • 2009
  • This study analyzes through the review of literature and laws the exposure time, clinical frequency, and radiation exposure of intraoral and extraoral radiography as well as of panoramic radiography performed by dental hygienists in dental clinics, compares the dental radiology curriculums of radiological science and dental hygiene departments, and proposes the expansion of dental hygienists' radiography operations. The radiology curriculums were compared between the radiological science and dental hygiene departments of colleges. For new analysis by radiography for dental diagnosis, the exposure time, radiation absorbed dose, effective dose, and number of days of natural radiation were compared by the type of oral radiation films and radiographical techniques proposed by domestic and international studies. The exposure time of panoramic radiography is 15 seconds and it takes about two minutes for completion, whereas the exposure time of the standard radiography is 0.2~0.8 seconds and it takes 10 times longer for completion of the radiography of full mouth than the panoramic radiography. The standard radiography can cause distortions of radiation at severely curved parts of dental arch and palatopharyngeal reflex. However, panoramic radiography can be performed even for lock jaw patients, causes less inconvenience to patients and is much simpler than the standard radiography. The percentage of dental clinics where radiography is performed by dental hygienists was 92.0%, and the percentage of standard film radiography by dental hygienists was 98% whereas the percentage of panoramic radiography by dental hygienists was 92%. For the absorbed dose which is an indicator of radiation exposure, the When the effective dose which is an indicator of the danger of radiation exposure was converted to the number of days of natural radiation, it was 3.3 days for panoramic radiography, but 13.9 days for the full mouth standard radiography by bisecting angle technique which was 4.2 times longer than the panoramic radiography. There were two colleges that had a dental radiology course with two credits in the departments of radiological science. The credits for dental radiology courses in the department of dental hygiene ranged varied by college, ranging from 3 to 8; on average, the theory course was 2.2 credits and the practice course was 2.02 credits. To summarize the above results, the percentage of dental clinics where panoramic radiography is performed by dental hygienists under the guidance of dentists is high. Panoramic radiography has become an essential facility for dental clinics. It is faster than standard film radiography and less dangerous due to low radiation exposure. Panoramic radiography is a simple mechanical job that does not require training of oral radiography by radiotechnologist. Because panoramic radiography is one of major operations which must be performed at all times in dental clinics, it must be designated as intraoral technique rather than extraoral technique, or legalized for inclusion in the scope of operations of dental hygienists.

  • PDF

A Study on the Environmental Condition and Safety in Dental Radiographic Room (치과 방사선 촬영실의 촬영실태와 방사선 안전관리 실태에 관한 조사 연구)

  • Kang, Eun-Ju;Lee, Kyung-Hee;Ju, On-Ju
    • Journal of dental hygiene science
    • /
    • v.5 no.2
    • /
    • pp.83-88
    • /
    • 2005
  • In spite of relatively low level of radiation dose used at dental clinics, long term exposure may be harmful, so radiation workers at dental clinics must be well aware of its danger. This study was radiation safety management by dental hygienists in order to take preventive measures for dental hygienists and suggest ideas to develop radiation safety training programs. For this, we contacted dental hygienists working at the local dental clinics for 4 months from December of 2003 to march of 2004 and obtained the following findings. 1. Regarding the intraoral radiographic method, the average daily photographing frequency of standard films stood at one to five pieces (47.5%), and the average weekly photographing frequency of digital radiation medicine stood at less than one piece (69.8%), and the average weekly photographing frequency of bitewing films stood at less than one piece (67.7%), and and the average weekly photographing frequency of occlusal films stood at less than one piece (95.5%), and the dentistries whose average weekly photographing frequency of pediatric films stood at one to five pieces accounted for 47.1 percent. 2. Regarding the extraoral radiographic method, the average weekly photographing frequency of panorama film stood at one to five pieces (63.7%), and less than one piece (20.9%), the average weekly photographing frequency of cephalometric film stood at less than one piece (72.3%), and one to five pieces (20.1%). 3. Concerning the radiation safety management training program, only 18.7% of total 278 surveyed attended the training progra., Attendance tendency of the training program by general characteristics showed statistically significant difference according to age (p<0.01), working experience (p<0.001), and marital status (p<0.01). 4. When asked about the protective equipments against radiation exposure, 40.6% of them said "modest", and 71.1% appeared equipped with led apron as a protective tool.

  • PDF

Evaluation of alveolar bone density by intraoral periapical radiography (구강 내 치근단 방사선 영상을 이용한 치조골 골밀도 측정의 유용성 평가)

  • Park, Eun-Jin;Kim, David-Hyungjin;Kim, Eun-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.3
    • /
    • pp.233-238
    • /
    • 2014
  • Purpose: A method detecting change of jaw or alveolar bone density may be helpful in periodontal care, implant dentistry and evaluation of bone density of whole body. Materials and methods: In this study, bone density of intraoral periapical radiography using phantom-integrated XCP is compared with that of quantitative computed tomography (QCT). Results: Bone density of intraoral periapical radiography and the one measured by QCT showed high correlation (correlation coefficient = 0.92, P<.001) in alveolar bone, and relatively high correlation (0.73, P<.001) in cancellous bone. Conclusion: This study revealed possibility of scoring of bone density by intraoral periapical radiography.

A absorbed and effective dose from the full-mouth periapical radiography using portable dental x-ray machine and panoramic radiography (ORIGINAL ARTICLE - 이동형 구내방사선촬영기로 촬영한 치근단 방사선촬영과 파노라마방사선촬영의 흡수선량과 유효선량 평가)

  • Han, Won-Jeong
    • The Journal of the Korean dental association
    • /
    • v.50 no.7
    • /
    • pp.420-430
    • /
    • 2012
  • Purpose: The purpose of this study was to measure the absorbed dose and to calculate the effective dose for full-mouth periapical radiography using the portable dental x-ray machine and panoramic radiography Material and Method: Thermoluminescent chips were placed at 25sites throughout the layers of the head and neck of a tissue-equivalent human skull phantom. The man phantom was exposed with the portable dental x-ray machine and panoramic unit. During full-mouth periapical radiography the exposure setting was 60 kVp, 2 mA and 0.15 ~ 0.25 seconds, while during panoramic radiography the selected exposure setting was 72 kVp, 8 mA and 18 seconds. Absorbed dose measurements were obtained and equivalent doses to individual organs were summed using ICRP 103 to calculate of effective dose. Result: In the full-mouth periapical radiography, the highest absorbed dose was recorded at the mandible body follow with submandibular glands and cheek. Using panoramic unit, the highest absorbed dose was parotid glands and the following was back of neck and submandibular glands. The effective dose in full-mouth periapical radiography using portable dental x-ray machine was 46 ${\mu}Sv$. In panoramic radiography, the effective dose was 38 ${\mu}pSv$. Conclusion: It was recommended to panoramic radiography for general check in the head and neck area because that the effect dose in the panoramic radiography was lower than the dose in the full-mouth periapical radiography using portable dental x-ray machine.

Facemask Effects in Two Types of Intraoral Appliances : Bonded Expander vs. Hyrax (구내 장치 종류에 따른 facemask의 효과 비교 : bonded expander와 Hyrax)

  • Park, Chanyoung;Park, Kitae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • The purpose of this study was to compare and evaluate facemask effects when two types of intraoral appliances were used for maxillary protraction for patients with class III malocclusion. Eighteen patients with class III malocclusion were treated with a facemask for an average of 12 months. Two types of intraoral appliances were used: nine patients were treated with bonded expander (Group 1), and nine patients with Hyrax (Group 2). Cephalometric radiographs were taken before and after treatment. Cephalometric radiographs were traced, analyzed, and the results such as sagittal, vertical and soft-tissue changes were compared between two groups. The amount of anchorage loss was also measured to evaluate the difference between two groups. All patients showed significant sagittal skeletal changes after treatment, and there was no statistically significant difference between the two groups. When anchorage loss was evaluated, no differences were shown between the two. Facemask with Hyrax or bonded expander is similarly an effective method as a treatment in class III malocclusion patients.

Evaluation of Radiation Doses of Dental Portable Equipment (치과용 이동형 방사선장치의 선량평가)

  • Park, Hoon-Hee;Kang, Byung-Sam
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.445-450
    • /
    • 2018
  • We aim to evaluate safety of radiation by measuring leakage dose and patient(phantom) incident dose of ZEN-PX II dental portable equipment developed by G company. Measurement for leakage dose of equipment is conducted on the top, at the bottom, on the left, on the right and at the back. Dose measurement incident on the subject with the area dosimeter when using the phantom and measurement the leakage dose of equipment when using the phantom are evaluated. Comparing the right with the highest leakage dose as a 0 cm, 25 cm, 50 cm, 75 cm and 100 cm dose measurement at the measurement height of 100 cm, 64.2 uR was reduced to 47.3 uR in the senser mode 0.32sec. Even in film mode it was measured at 414.4 uR and about 27% lower at 162.6 uR. As the result of this study, when the irradiation time is 2 sec the right side dose is 290.5 uR and sensor mode is 0.32 sec the right side dose is 64.2 uR.