• 제목/요약/키워드: 교통류 밀도 관리

검색결과 22건 처리시간 0.036초

유비쿼터스 교통 환경하에서 교통류 관리구상 (Traffic Flow Management under Ubiquitous Transportation System Environments)

  • 박은미
    • 대한교통학회지
    • /
    • 제26권3호
    • /
    • pp.179-186
    • /
    • 2008
  • 교통류의 안정성을 깨지 않음과 동시에 생산성을 저하시키지 않는 적절한 교통류 관리 방안이 필요하다. 지금까지 기존 지능형교통시스템(ITS: Intelligent Transportation System)에 의한 교통류관리에서는, 이러한 개념의 교통류 관리 방안을 명시적으로 다루지 못하였다. u-T(Ubiquitous Transportation) 시스템 환경 하에서, 개별차량 위치, 속도 등 미세한 데이터 수집이 가능해 지며, 이러한 개별차량 위치 데이터에 의해 기존 ITS 환경에서는 수집 불가능했던 밀도 산정이 가능해 진다. 또한 V2I(Vehicle-to-Infra), V2V (Vehicle- to-Vehicle) 등 양방통신이 가능해 짐에 따라 개별차량 혹은 차량군 단위의 미세 제어와 개별차량 단위의 미세 대응이 가능해 진다. 본 논문에서는, 이러한 u-T의 수집 데이터와 통신환경을 기반으로, 교통류가 불안정해 사고 잠재력이 커지고 결국 교통류가 와해되어 생산성이 저하되는 것을 예방하는 예방차원의 교통류 관리 방안을 제시하였다. 이것을 실현하기 위한 적정 속도, 적정 차두간격을 그린쉴드 모형에 기반하여 산정하였는데, 제반 교통류 모형을 비교 평가하여 적정 모형을 선택하는 연구도 향후 수행되어야 할 것으로 판단된다.

검지기간 속도-밀도의 관계를 활용한 돌발상황 감지기법 (An Incident Detection Method for Using Speed-Density Relations)

  • 이선하;안우영;강희찬
    • 대한교통학회지
    • /
    • 제24권2호
    • /
    • pp.127-137
    • /
    • 2006
  • 돌발상황이 발생하였을 경우 발생장소를 기준으로 상류부와 하류부에서는 교통류의 특성이 서로 다르게 나타난다 즉, 상류부에는 저속으로 운행하는 높은 밀도의 교통류가 그리고, 하류부에는 고속으로 운행하는 낮은 밀도의 교통류가 형성되는 것이다. 본 연구에서는 이러한 특성을 이용하여 돌발발생 장소의 상 하류부 검지기 간의 속도와 밀도의 차이를 시간적, 공간적으로 동시에 고려한 돌발감지기법을 제시하였다 따라서 본 연구에서는 기존에 운영되고 있는 비교기법에 속하는 돌발감지기법들이 점유율 단독 또는 점유율과 운행속도의 추세를 별개로 분석한 후 두 개 지표의 변화추세를 고려한 것에 비하여 검지기 간의 거리 및 속도와 밀도를 동시에 고려 할 수 있는 개념을 제시하는데 그 의의가 있다. 천안-논산고속도로의 사고 상황 자료를 바탕으로 off-line 상에서 본 기법을 적용한 결과 인접 검지기 간의 속도-밀도관계를 분석함으로서 사고위치와 검지기간의 관계 등을 포함한 돌발상황을 감지할 수 있었다. 향후 본 기법이 고속도로교통관리시스템(FTMS)의 돌발감지기법(AID)으로 적용되기 위해서는 광범위한 자료를 바탕으로 돌발을 판정할 수 있는 임계치, 사고의 파장정도 및 돌발발생장소와 검지기 간의 위치에 따른 변화추이 등에 대한 추후 연구가 필요할 것으로 판단된다.

유비쿼터스 환경에서의 연속류 적정속도 관리 기술 개발 (Developing a Freeway Flow Management Scheme Under Ubiquitous System Environments)

  • 박은미;서의현;고명석;오현선
    • 대한교통학회지
    • /
    • 제28권4호
    • /
    • pp.167-175
    • /
    • 2010
  • 유비쿼터스 통신 및 센서네트워크 기술발전으로, 기존 ITS(Intelligent Transportation System) 환경에서 불가능했던 미시 교통류 정보의 수집 가공과 V2V(Vehicle-to-Vehicle), V2I(Vehicle-to-Infra) 양방 통신환경을 활용한 개별차량 및 차량군 단위의 미세제어가 가능해졌다. 이에, 유비쿼터스 기술진보에 맞춘 진일보된 교통운영기술로서 적정속도 관리 알고리즘을 제시하고 그 알고리즘의 성능과 효과를 평가하였다. 적정속도 관리 알고리즘은, 소통원활 상황에서 과속을 억제하고 개별운전자간 속도 편차를 최소화함을 목표로 하는 과속저속관리와, 교통류가 임계상태에 가까워 졌을 때 혼잡교통류로의 전이를 예방 혹은 최대한 늦추는 것을 목표로 하는 밀도관리로 구성된다. 현재 교통 상용 시뮬레이션 소프트웨어로는 개발차량의 속도를 관리하는 본 연구의 알고리즘 모사와 평가가 불가능하여, COM(Component Object Model) Interface를 통해 VISSIM과 직접 작성한 프로그램 코드를 가지고 시뮬레이션 테스트 베드를 구축하여 이러한 효과평가를 수행하였다. 평가 결과 본 연구에서 제안한 알고리즘에 의해 적정속도를 관리 할 경우, 혼잡이 줄어들고 통행시간도 감소하는 효과를 볼 수 있었다.

유비쿼터스 교통환경을 위한 연속류 정체예방관리 알고리즘 (Preventive Congestion Management Algorithm for Ubiquitous Freeway System)

  • 박은미
    • 대한교통학회지
    • /
    • 제27권3호
    • /
    • pp.161-168
    • /
    • 2009
  • 유비쿼터스 교통환경에서는 개별차량의 위치, 속도 등 미세한 데이터 수집이 가능하며, V2V (Vehicle-to-Vehicle), V2I(Vehicle-to-Infra) 양방통신이 가능해 짐에 따라 개별차량 혹은 차량군 단위의 미세 제어가 가능해 진다. 이와 같이 기존 ITS 환경과 차별화되는 유비쿼터스 교통환경에 합당한 새로운 교통관리 개념을 정립하는 것과 이러한 개념을 실현할 알고리즘 개발도 필요하다. 이에 본 논문에서는, 교통류 안정성 유지를 통하여 사고발생 잠재력을 최소화시키고 생산성 저하를 방지하는 예방차원의 u-연속류 정체예방관리 서비스를 정의하고 알고리즘을 개발하였다. 이러한 u-연속류 정체예방관리 알고리즘에는 다음과 같은 요소기술 개발이 포함된다. 첫째, 유비쿼터스 교통센터 네트워크에서 수집된 개별차량 데이터를 처리하여, 3차원의 속도/교통량/밀도 프로파일을 구성하는 기술. 둘째, 차량군과 충격파 프로파일을 추출하는 기술. 셋째, 위의 데이터 처리를 통하여 교통류 안정성을 판단하고 교통상황을 구분하는 기술. 넷째, 교통 상황별 적정속도 산정 기술. 다섯째, V2V, V2I 통신환경을 이용한 개별차량 혹은 차량군 단위 적정속도 제공 기술. 기존의 ITS 환경의 사후관리와 비교할 때, 본 연구에서 제안하는 정체예방관리는, 예방적 차원의 사전관리라는 점에서 진일보한 교통류 관리이다. 향후 유비쿼터스 교통 환경을 모사할 수 있는 시뮬레이션 모형 개발이 필요하며, 테스트 베드를 구축하여 현장실험을 시행하고 알고리즘에서 요구되는 문턱치를 결정하는 것도 필요하다.

혼잡교통류 관리를 위한 동적 용량의 개념 및 산정방법 (Dynamic Capacity Concept and its Determination for Managing Congested Flow)

  • 박은미
    • 대한교통학회지
    • /
    • 제22권3호
    • /
    • pp.159-166
    • /
    • 2004
  • 도로용량편람에서 정의하고 있는 용량은 하류부에 용량을 제한하는 요소가 없다는 것을 가정한 정상교통류에 대한 용량 개념으로서, 이는 전통적으로 계획, 설계, 현재 및 장래 도로시설의 운영상태 분석 등에 사용되어 왔다. 실시간 제어는, 용량을 초과하지 않는 교통류를 유지시켜 혼잡교통류로의 전이를 막고, 물리적 여건이나 제반 확률적 요인으로 혼잡이 발생하였을 경우 조속히 용량이하로 교통량을 떨어뜨려 정상교통류로 회복시키는 데 목표를 둔다. 이러한 맥락에서 용량은 실시간 제어의 효과를 좌우하는 중요한 입력변수이며, 정상교통류 상태라면 혼잡으로 전이되지 않을 임계치로서의 용량 산정이 중요한 관건이다. 그러나 혼잡교통류 상태에서 정상교통류로 되도록 빨리 회복시켜 주기 위한 제어 기준으로서의 용량은, 하류부 혼잡의 시공간적 전개에 따라 변하는 값이어야 하며 이러한 동적 용량변화를 정확히 예측할 수 있는 방법론이 요구된다. 이에 본 연구에서는 기존의 용량 개념을 출력 개념의 용량으로 정의하고, 입력 개념의 용량을 최대가능처리량(Maximum Sustainable Throughput)으로 새롭게 정의하였다. 이 최대가능처리량은 혼잡의 시공간적 전개에 따라 결정되는 동적 용량이며, 이러한 혼잡의 시공간적 전개는 Newell의 단순화된 교통량-밀도 모형으로 예측할 것을 제안하였다.

합천댐 직하류에서 부등류 수치모의를 통한 식생의 영향 분석 (Analysis on Vegetation Effect through Numerical Simulation of Non-Uniform Flow at Downstream of Hapcheon Dam)

  • 박수환;강태운;장창래;김주호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.238-238
    • /
    • 2022
  • 합천댐의 건설 이후, 댐직하류 구간에서는 10년 동안의 방류량 감소와 기후변화로 인한 강우패턴의 변화로 하도식생의 활착이 발생하여 식생이 증식하고 밀도가 점차 증가하고 있다. 식생밀도의 증가는 흐름에 대한 항력을 증가시켜 유속을 감소시키고 수심을 증가시킨다. 이는 통수능 저하를 초래하며, 홍수 시 수위증가에 따른 홍수범람의 위험성 증가시킨다. 따라서 식생영향에 대한 심화적인 이해를 제고하여 적절한 식생관리대책을 구축할 필요가 있다. 본 연구에서는 이러한 필요성에 맞추어 식생대 영향에 따른 흐름의 변화를 예측모의하여 흐름과 식생대의 상호작용에 대한 분석을 수행하였다. 이를 위해 2차원 흐름모형인 Nays2D를 이용하여 합천댐 직하류 구간을 대상으로 식생밀도의 변화에 따른 흐름의 변화를 부등류를 기반으로 모의하였다. 상류단의 경계조건은 162.99 m3/s(실운영 방류량), 995 m3/s(2년빈도 댐 조절 방류량), 2670 m3/s(100년빈도 댐 조절 방류량)로 3개의 유량으로 구분하여 모의하였다. 식생의 특성은 현장조사를 통해 밀도를 산정하여 수치모의에 적용하였다. 식생밀도는 4가지로 구분하여 모의시나리오를 구축하였으며 현장조사를 통해 산정된 2021년도 식생밀도를 기준으로 식생밀도를 증감하여 수치모의를 수행하였다. 수치모의 조건은 2021년 식생현황, 식생개선, 식생존치, 전벌채로서 식생개선의 경우, 2021년 식생밀도의 0.5배로, 식생존치의 경우, 식생밀도를 2배로 적용하였다. 전벌채는 식생이 없는 것으로 가정하였다. 수치모의 결과, 식생개선이 2021년 식생현황과 식생존치보다 상대적으로 수심이 낮게 나타났다. 식생을 전벌채한 경우, 식생이 존재하는 조건보다 수심이 낮고 유속이 빠르게 나타났으며 특히, 만곡부의 외측에서는 2차류의 발달로 흐름이 집중되었다. 이를 통해 식생개선의 경우, 식생현황과 식생존치보다 홍수범람의 가능성이 적을 것으로 판단되며 전벌채의 경우, 만곡부 외측에서 2차류 발달에 의한 세굴을 야기하여 제방의 안정성에 영향을 줄 것으로 예측된다. 본 연구는 댐 직하류에 식생대 밀도변화가 흐름변화에 미치는 영향을 분석한 수치모의 사례로서 이는 추후 식생을 고려하는 하천관리방안을 수립 시, 식생관리방법에 대한 근거자료로 활용될 수 있을 것으로 기대된다.

  • PDF

연속교통류 재현을 위한 거시적 모형의 비교 연구 (A Study on Describing Uninterrupted Traffic Flows using Macroscopic Models)

  • 임성만;김대호;김영찬
    • 대한교통학회지
    • /
    • 제20권3호
    • /
    • pp.69-82
    • /
    • 2002
  • 본 연구는 도시고속도로 교통류의 효과적인 관리와 운영상태 평가에 사용되는 거시적 연속교통류 재현 모형의 성능 비교에 관한 연구이다. 연속교통류 재현을 위한 거시적 모형은 크게 단순연속방정식 모형과 가속도방정식 모형의 범주 안에서 여러 모형들이 개발되어져 왔지만, 국내에서는 이 두 모형들에 대한 성능 비교에 관한 연구가 미흡한 실정이다. 따라서, 본 연구는 대표적인 거시적 연속교통류 모형들의 성능평가를 통해서 개개 모형들이 가지고 있는 특징을 알아본 후 대도시 고속도로의 교통류 재현에 이용할 수 있는 모형을 선정한다. 모형의 성능 비교를 위해 거시적 연속교통류 모형 중에서 대표적인 5개 모형(Lax Method Model, Upwind Scheme Model, Hilliges' Model, Papageorgiou's Model, Cell-Transmission Model)을 선택하였으며, Numerical Example과 실측 현장자료를 이용하여 모형들의 성능 비교를 실시하였다. 가상자료를 이용한 분석방법에서는 대체로 모든 모형이 적절한 결과값을 보여주었지만, 단순 연속방정식 모형이 모형의 안정성과 교통상황 재현력 측면에서 볼 때 가속도방정식 모형보다 좀더 안정적인 결과값을 보여주었다. 현장자료를 이용한 분석방법에서는 미국의 Nimitz Freeway의 오전 첨두시 3시간 교통 자료(밀도, 교통량)를 이용하였다. 분석대상구간에 대한 모형성능 평가결과, 단순연속방정식 모형의 결과와 가속도방정식 모형의 결과가 유사하게 나왔으며. 비교적 계산식이 단순한 거시적 연속교통류 모형들도 분석대상구간의 혼잡상황을 어느 정도 잘 재현하고 있음을 보여준다.

고속도로 대기행렬 길이 산정모형 개발을 위한 연속류 특성 분석 (A Study of Traffic Flow Characteristics for Estimating Queue-Length in Highway)

  • 노재현
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1998년도 제34회 추계 학술발표회
    • /
    • pp.297-297
    • /
    • 1998
  • 고속도로의 교통혼잡을 관리하기 위해서는 근본적으로 혼잡지점 상류부의 진입교통량을 제어해야 한다. 이를 위한 효과적인 램프미터링 운영전략이나 고속도로 교통정보제공방안을 수립하기 위해서는 혼잡영향권(대기행렬길이)에 관한 신뢰성 있는 데이터가 반드시 필요하다. 고속도로의 대기행렬길이를 산정하기 위해 일반적으로 충격파이론과 Queueing이론을 제시하고 있다. 그러나, 기존의 충격파 이론을 포물선형의 교통량-밀도관계식을 근거로 하고 있어 충격파간에 발생하는 부수적인 충격파를 해석하는 과정이 수학적으로 불가능하여 실질적인 목적으로 사용할 수 없음은 이미 잘 알고 있는 사실이다. 최근에 이러한 한계를 극복할 수 있는 새로운 방법으로 교통량 밀도간의 관계식을 삼각형으로 가정하고 교통량 대신에 누적교통량을 사용하는 Simplified Theory of Kinematic Waves In Highway Traffic이 개발(Newell, 1993)되었지만, 이 방법을 적용하기 위해서는 기본적으로 대상 고속도로 구간의 교통량-밀도관계식을 규명해야 하는 어려움이 있다.(사실 실시간으로 밀도데이터를 수집하기란 불가능하다.) Queueing이론에서 제시하는 대기행렬은 모두 대기차량이 병목지점에 수직으로 정렬하여 도로를 점유하지 않는 Point Queue(혹은 Vertical stack Queue)로서 실제로 도로상에 정렬된 대기행렬(Real Physical Queue)과는 전혀 다르다. 이미 입증된 바 있어, Queueing이론을 이용함은 타당성이 없다. 이러한 사실에 근거하여 본 연구는 고속도로 대기행렬길이를 산정할 수 있는 모형개발을 위한 기초연구로서 혼잡상태의 연속류 특성을 분석하는데 목적이 있다. 이를 위해, 본 연구에서는 서울시 도시고속도로에서 수집한 실제 데이터를 이용하여 진입램프지점의 혼잡상태에서 대기행렬의 증가 또는 감소하는 과정을 분석하였다. 주요 분석결과는 다음과 같다. 1. 혼잡초기의 대기행렬은 다른 혼잡시기에 비해 상대적으로 급속한 속도로 증가함. 2. 혼잡초기의 대기행렬의 밀도는 다른 혼잡시기에 비해 비교적 낮음. 3. 위의 두 결과는 서로 관계가 있으며, 혼잡시 운전자의 행태(차두간격)과 혼잡기간중에도 변화함을 의미함. 4. 교통변수 중에서 대기행렬길이를 산정하는데 적합한 교통변수를 교통량과 밀도로 판단됨. 5. Queueing이론에서 제시하는 대리행렬길이 산정방법인 대기차량대수$\times$평균차두간격은 대기행렬내 밀도가 일정하지 않아 부적합함을 재확인함. 6. 혼잡초기를 제외한 혼잡기간 중 대기행렬길이는 밀도데이터 없이도 혼잡 상류부의 도착교통량과 병목지점 본선통과교통량만을 이용하여 추정이 가능함. 7. 이상에 연구한 결과를 토대로, 고속도로 대기행렬길이를 산정할 수 있는 기초적인 도형을 제시함.

  • PDF

Momentum Equation을 이용한 차로감소구간 교통류의 Higher-Order Continuum 모형 개발 (Developing Higher-Order Continuum Models for Describing Traffic Flow Behavior at Lane Drops Using Momentum Equation)

  • 손영태;양충헌;박우신
    • 대한교통학회지
    • /
    • 제20권2호
    • /
    • pp.93-104
    • /
    • 2002
  • 본 연구는 거시적 교통류 모형 중 고차연속교통류모형(high-order continuum model)의 개발을 목적으로 한다. 이 모형은 연속류 구간을 대상으로 수행되었고, 그 첫 번째 단계로 유·출입 구간이 없는 차로감소구간에서의 교통류를 묘사하였다. 개발된 모형은 차로변경율을 고려하였으며, 짧은 구간에서, 단기간동안의 교통류 행태에 대한 묘사를 가능하도록 하였다. 본 연구에서 개발된 모형은 우리나라 연속류 시설의 기하구조조건과 운전자들의 운전행태를 고려하여 우리나라 실정에 맞도록 새롭게 적용하였다. 이를 통해 장래에 연속류 시설에 대한 교통제어 전략 수립이나 운영 체계 개선과 같은 교통공학적 관리를 할 수 있을 것으로 기대된다. 모형의 현장적용성을 알아보기 위해, 현장에서 관측한 자료를 가지고 모의실험을 하였다. 그 결과, 교통량, 밀도, 속도의 시간대별 변동을 비교적 충실히 구현해 낸 것으로 판단된다.

표본 ADAS 차두거리 기반 연속류 시공간적 교통밀도 추정 (Spatiotemporal Traffic Density Estimation Based on Low Frequency ADAS Probe Data on Freeway)

  • 임동현;고은정;서영훈;김형주
    • 한국ITS학회 논문지
    • /
    • 제19권6호
    • /
    • pp.208-221
    • /
    • 2020
  • 본 연구는 첨단운전자보조시스템(Advanced Driver Assistance System, ADAS)이 빠르게 보급됨에 따라 표본 프로브 차량에 설치된 ADAS로부터 얻은 개별차량의 궤적 데이터와 전방차량과의 차두거리 데이터를 이용하여 연속류의 교통밀도를 추정 및 분석하는 것을 목적으로 한다. 과거 연속류 교통밀도는 주로 차량검지시스템(Vehicle Detection System, VDS)에서 수집되는 교통량, 속도, 점유율 등의 데이터를 가공하여 추정되거나, CCTV등의 영상정보를 활용하여 직접 차량 대수를 계수하여 추정되었다. 이러한 방식은 교통밀도 추정의 공간적 제약이 있고, 교통 혼잡시 추정의 신뢰도가 낮다는 한계를 보였다. 이에 본 연구에서는 선행연구의 한계를 극복하기 위해 ADAS로부터 수집된 개별차량 궤적 데이터와 차두거리 정보를 활용하여 도로의 공간을 검지하고 일반화된 밀도(Generalized Density)방식을 이용하여 시공간적 교통밀도를 추정한다. 이에 따라 ADAS차량의 표본율에 따른 교통밀도 추정의 정확도를 분석한 결과, 30%의 표본율일 경우 교통밀도 참 값과 약 90% 일치하는 것으로 나타났다. 이를 통해 본 연구는 향후 ADAS 및 자율주행차량이 혼재되는 도로 상황에서 신뢰도 높은 교통밀도 추정을 가능하게 하며 효율적인 교통운영관리에 기여할 수 있을 것으로 판단된다.