유전자 알고리즘은 탐색 공간에서 새로운 샘플을 찾기 위하여 선택과 재조합의 연산을 사용하는 모집단 기반 모델이다. 교차 연산은 최적화 알고리즘인 유전자 알고리즘(GA)에서 가장 중요한 부분을 차지한다. 이 논문에서는 교차 연산 수행 시 필요한 교차점 위치 조절이 수렴에 어떠한 영향을 주는지 분석해 보고자 한다. 교차점 위치를 세대 진행수와 수렴 정도에 따라 특정 위치로 조절한 방법이 일반적인 확률로 교차점 위치를 정하여 최적화를 수행한 경우보다 전역 해를 더 빨리 찾아감을 볼 수 있었다.
유전 알고리듬은 NP-Hard 문제의 해결이나, 함수 최적화, 복잡한 제어기의 파라미터 값 추적 등, 광범위한 분야에 걸쳐 이용되고 있다 일반적인 유전 알고리듬은 적합도 함수를 통해 해들의 품질을 결정하고, 해들의 품질에 따라 선택 연산을 거쳐, 교차나 돌연변이를 통해 우수한 품질의 해를 찾는 과정을 가진다 현재 이 과정은 대부분 소프트웨어적으로 구현되어 범용 프로세서를 통해 수행된다. 그러나 높은 소프트웨어 의존성은 해집단의 크기가 커질수록 교차/변이 연산과 해들의 품질비교에 수행되는 시간을 크게 증가시키는 약점이 있다. 따라서 본 논문에서는 순위 기반 선택과 일점 교차(one-point crossover)를 사용한다는 제약하에, 해들의 순위를 정렬 네트워크를 통해 결정하고 해들을 Residue Number System(RNS)로 표현하여 하드웨어적으로 교차연산을 처리하는 프로세서 구조를 제안한다 이러한 접근을 통해 해들의 품질비교에 걸리는 시간을 크게 줄이고 교차/변이 연산의 효율을 높일 수 있다.
본 논문에서는 부모 개체의 해밍 거리에 기반하여 선택적 변이연산을 적용한 유전알고리즘을 제안한다. 유전자 형이 매우 유사한 개체들 간의 유전연산은 알고리즘의 탐색성능을 저하시키고 조기 수렴의 가능성을 증가시킨다. 본 논문에서는 이러한 현상을 극복하기 위하여, 교차연산 시 선택된 두 부모 개체간의 해밍 거리에 따라 그 값이 낮으면 교차연산 후 생성된 두 자식 개체 중 한쪽에게 높은 변이확률을 적용하고 다른 한쪽 자식은 부모와 비슷한 유전자 형으로 탐색을 계속하게 하여 조기 수렴을 방지하면서 해집단의 다양성 유지 기능을 향상 시켰다. 제안한 유전 알고리즘을 다차원 배낭 문제에 적용한 결과, 같은 조건에서 단순 유전 알고리즘(SGA) 보다 향상된 탐색 성능을 보여주었다.
많은 최적화 문제에서 해답들의 구조는 서로 의존성을 가지고 있다. 이러한 경우 기존의 진화연산이 사용하는 빌딩 블록 개념으로는 문제를 해결하는데 많은 어려움을 겪게 된다. 이를 극복하기 위해서 헬름홀츠 머신(Helmholtz machine)을 이용해서 데이터의 분포를 예측한 후 최적화를 수행하는 방법을 제안한다. 기존의 진화 연산을 바탕으로 하지만 교차연산이나 돌연변이 연산을 사용하는 대신에, 헬름홀츠 머신을 이용해서 데이터의 분포를 파악하고, 이를 이용해서 새로운 데이터를 생성하는 과정을 통해 최적화 과정을 수행한다. 진화연산으로 해결하는데 곤란을 겪고 있는 여러 함수들을 해결하는 이를 검증하였다.
본 논문에서는 컨볼루션 신경망 구조(Convolution Neural Network)에서 정규화 및 교차검증 횟수 감소를 위한 무작위로 풀링 연산을 선택하는 방법에 대해 설명한다. 컨볼루션 신경망 구조에서 풀링 연산은 피쳐맵(Feature Map) 크기 감소 및 이동 불변(Shift Invariant)을 위해 사용된다. 기존의 풀링 방법은 각 풀링 계층에서 하나의 풀링 연산이 적용된다. 이러한 방법은 학습 간 신경망 구조의 변화가 없기 때문에, 학습 자료에 과도하게 맞추는 과 적합(Overfitting) 문제를 가지고 있다. 또한 최적의 풀링 연산 조합을 찾기 위해서는, 각 풀링 연산 조합에 대해 교차검증을 하여 최고의 성능을 내는 조합을 찾아야 한다. 이러한 문제를 해결하기 위해, 풀링 계층에 확률적인 개념을 도입한 무작위 풀링 연산 선택 방법을 제안한다. 제안한 방법은 풀링 계층에 하나의 풀링 연산을 적용하지 않는다. 학습기간 동안 각 풀링 영역에서 여러 풀링 연산 중 하나를 무작위로 선택한다. 그리고 시험 시에는 각 풀링 영역에서 사용된 풀링 연산의 평균을 적용한다. 이러한 방법은 풀링 영역에서 서로 다른 풀링 조합을 사용한 구조의 평균을 한 것으로 볼 수 있다. 따라서, 컨볼루션 신경망 구조가 학습데이터에 과도하게 맞추어지는 과적합 문제를 피할 수 있으며, 또한 각 풀링 계층에서 특정 풀링 연산을 선택할 필요가 없기 때문에 교차 검증 횟수를 감소시킬 수 있다. 실험을 통해, 제안한 방법은 정규화 성능을 향상시킬 뿐만 아니라 및 교차 검증 횟수를 줄일 수 있다는 것을 검증하였다.
앙상블 기법은 여러 모델을 종합하여 최종 판단을 산출하는 기계 학습 기법으로서 딥러닝 모델의 성능 향상을 보장한다. 하지만 대부분의 기법은 앙상블만을 위한 추가적인 모델 또는 별도의 연산을 요구한다. 이에 우리는 앙상블 기법을 교차 검증 방법과 결합하여 앙상블 연산을 위한 비용을 줄이며 일반화 성능을 높이는 교차 검증 앙상블 기법을 제안한다. 본 기법의 효과를 입증하기 위해 MRPC, RTE 데이터셋과 BiLSTM, CNN, BERT 모델을 이용하여 기존 앙상블 기법보다 향상된 성능을 보인다. 추가로 교차 검증에서 비롯한 일반화 원리와 교차 검증 변수에 따른 성능 변화에 대하여 논의한다.
곡면간의 교차계산은 부울연산(Boolean operations)과 조각된 곡면들을 지원하기위한 기하 모델링과 솔리드에서 사용되는 기본적인 기하학 연산이다. 본 논문에서는 두 정규화된 곡면의 교차곡선을 따라 추적하기 위한 새로운 알고리즘을 제안한다. 그러므로 본 논문에서는 계산상의 간소화와 2차 연속성을 나타낸다. 따라서, 교차 곡선의 한 점이 주어지면 이 점을 초기점으로 하여 교차 곡선의 전체 곡선을 추적한다. 그리고 각각의 교선들의 초기점들은 쿼드트리에서 DFS(Depth First Search) 기법으로 검색되고 교선은 연속적인 형태로 자연스럽게 표현된다.
무장 비행 궤적 간 간섭을 식별하여 아군 무장간 충돌을 방지함으로써 단위 시간 당 교전 효과를 극대화하는 것은 다무장 대지 무기체계 운용에 있어서 필수적이다. 기존 연구에서는 연산 부하의 최소화를 목표로 3차원 무장 비행 궤적을 2차원 평면의 사격선으로 변환하여 간섭을 식별하는 알고리즘을 제안하였다. 그러나 기존 연구는 2차원 평면에서 사격선간 교차점이 발생할 경우 간섭으로 식별하고, 이에 대한 무장 할당을 해제함으로써 무장 활용도를 감소시키는 문제가 있었다. 이를 고려하여 본 논문에서는 교전 효과 최대화를 위한 효율적인 무장 궤적 간 간섭 식별 알고리즘을 제안한다. 제안하는 알고리즘은 2차원 평면에서 사격선간 교차점이 발생할 경우, 해당 사격선을 3차원 평면에서 비행 궤적 간 비교 연산을 수행하여 실제 간섭 여부를 식별함으로써 무장 활용도를 최대화하는 것이 가능하다. 성능 평가 결과, 제안하는 기법은 기존 기법에 비해 궤적 교차수는 최대 52.1% 감소하였으며, 그에 따른 표적 할당율은 최대 6.9% 향상됨을 보임으로써 그 우수성을 확인하였다.
게임에서 캐릭터가 현재 위치에서 목적지까지 경로를 탐색하는 것은 매우 중요하다. 특히, 오브젝트나 벽 등의 장애물들이 배치된 복잡한 게임 맵에서는 이러한 장애물을 회피하면서 가능한 최단 경로를 찾아 이동해야 한다. 본 논문에서는 복잡한 게임 맵 상에서 캐릭터가 목적지까지 최단 경로를 탐색하는 방법으로 유전자 알고리즘을 적용하는 방법을 제안한다. 유전자 알고리즘은 모집단(Population)을 구성하는 염색체의 인코딩 및 디코딩, 진화를 위한 연산자인 교차연산(Crossover)과 돌연변이연산(Mutation), 그리고 염색체를 평가하는 목적함수로 구성된다. 본 논문에서는 염색체 구성을 시작 노드에서 목적지 노드까지의 전체 노드로 구성하기 보다는 캐릭터의 현재노드에서 이동할 수 있는 8방향만으로 구성하여 염색체의 크기를 줄였고, 이를 통해 염색체의 인코딩과 디코딩 연산 시간을 줄일 수 있었다.
삼각형간의 교차 계산은 많은 3 차원 기하 문제들을 해결하는데 있어서 기본적으로 요구되는 연산 과정이다. 본 논문에서는 대량의 삼각형 집합 안에서의 교차 계산을 효율적이며 강인하게 처리할 수 있는 GPU 알고리즘을 제안한다. 이 알고리즘은 k-d 트리의 구성, 삼각형쌍 생성, 정확한 교차 계산을 모두 GPU에서 처리한다. 여기서 사용되는 k-d 트리에서는 분할 과정 중에 삼각형들의 복사가 많이 발생한다. 이렇게 복사된 삼각형들로 인하여 중복된 삼각형쌍들이 많이 생성되는데, 이러한 중복 삼각형쌍들을 효율적으로 제거하기 위하여 분할 인덱스를 도입하였다. 분할 인덱스는 간단한 논리곱 연산만으로 중복 여부를 효과적으로 판단할 수 있다. 수치적 강인성을 높이기 위하여는 부동소숫점 필터링을 통해 불안전한 삼각형쌍들을 분리하고, CLP(controlled linear perturbation)를 이용하여 CPU쓰레드에서 처리하도록 하였다. 제안한 알고리즘은 기존의 민코스키합 알고리즘의 합삼각형 교차계산에 적용하여 효율성과 강인성을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.