• Title/Summary/Keyword: 교차로 탐지

Search Result 71, Processing Time 0.016 seconds

Evaluating Quadriceps Muscle Damage after Downhill Running of Different Intensities using Ultrasonography (내리막 달리기 후 국소 근손상의 영상학적 비교분석 : 운동 강도의 영향)

  • Sun, Min Ghyu;Kim, Choun Sub;Kim, Maeng Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.1028-1040
    • /
    • 2019
  • The current study was performed to investigate the magnitude of exercise-induced muscle damage (EIMD) after downhill running (DR) of different intensities and to examine the availability of muscle echo intensity as biomarkers to detect regional damage within quadriceps muscle group (QG) following DR. Healthy college-age men (n=11) were experienced twice DR sessions [$50%HR_{max}$ DR, LDR; $70%HR_{max}$ DR, HDR] separated by a 2-week wash-out period with the random order. After DR, severity of EIMD according to exercise intensity were determined by serum creatine kinase (CK) activity, muscle tenderness, and neuromuscular function indicators such as a maximal voluntary isometric contraction (MVIC) and range of motion (ROM). Transvaginal B-mode imaging had been employed to evaluate regional muscle echo intensity within QG [rectus femoris, RF; vastus lateralis, VL; vastus medialis, VM; vastus intermedius, VI]. After both DR sessions, changes in serum CK activity and muscle tenderness have tended to more increase in HDR compared to those of LDR. There was a significant interaction effect between exercise intensity during DR and the time course of serum CK activity(p<.05). However, there were no statistical differences between sessions in muscle tenderness. The time course of changes in the neuromuscular functions after DR were similar to those of regional muscle echo intensity regardless exercise intensity. Although neuromuscular function showed to decline in HDR more than those of LDR after DR, no statistical differences between sessions. In contrast, there were significant interaction effects between sessions and time course of changes in RF and VL muscle echo intensity(p<.01), but not shown in those of VI and VM. These results indicated that each muscles within the QG show different response profiles for EIMD during DR, exercise intensity influences on these responses as well. In particular, current findings suggested that muscle echo intensity derived from ultrasound imaging is capable of detecting regional muscle damage in QG following DR.