• Title/Summary/Keyword: 교정가열

Search Result 15, Processing Time 0.026 seconds

On-Board Black Body Thermal Design and On-Orbit Thermal Analysis for Non-Uniformity Correction of Space Imagers (영상센서의 비균일 출력특성 교정용 흑체의 열설계 및 궤도 열해석)

  • Oh, Hyun-Ung;Shin, So-Min;Hong, Ju-Sung;Lee, Min-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.1020-1025
    • /
    • 2010
  • On-board black body is used for radiation temperature calibration of spaceborne radiometers and imaging systems. The thermal design of black body proposed in this study is basically composed of heaters to heat-up the black body from low to high temperature during the calibration, heat pipe to transfer residual heat on the black body just after calibration to radiator on the S/C and heaters on the radiator to keep the certain temperature range of the black body during non-calibration. In the present work, the effectiveness of thermal design of on-board black body has been investigated by on-orbit thermal analysis.

A Study for Remained Efficiency of Correction Heating after Block Lifting (블록 리프팅 후 갑판 교정가열의 잔존 효율 연구)

  • Ha, Yun-Sok;Won, Seok-Hee;Yi, Myung-Su
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.118-125
    • /
    • 2008
  • The deck plates of ship block is made of thin plates in their construction. A main reason of using thin plates is that deck plates don't need to support large structural loads. Therefore, out-of-plane deformations between stiffeners are frequent in deck blocks. Because these are got right by correction heating, they continuously causes quality problems in the final dock-building process. According to preceding research, the lifting process by cranes would offset the effect of correction heating. This study finds out the remained efficiency of correction heating when tensional loads are added by a lifting to corrected parts. We used inherent strains in calculating the efficiency, and established the methodology where the positions for callings are. For getting more accurate positions, besides the structural lifting analysis, welding deformation analysis with upper block and measured data from a serial ship are also referenced.

  • PDF

A Study on the Automatic Fabrication of Welded Built-up Beams (용접 조립보의 가공 자동화에 관한 연구)

  • Jang, Chang Doo;Seo, Seung II
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.206-213
    • /
    • 1996
  • Longitudinal deformation due to welding of built-up beams must be straightened for attachment with plates. Straightening of deformation is carried out by much experienced workers and requires much time and labor. In this study, a procedure to calculate the required reverse curvatures to straighten the welding deformation is presented and a method to simulate the fabrication procedures for the built-up beams is developed for the purpose of improvement of productivity.

  • PDF

Analysis of Correction of Welding Deformation of Stiffened Plate by Heating Using Equivalent Loading Method based on Inherent Strain (고유변형도 기반 등가하중법에 의한 보강판의 가열 교정 해석)

  • 송하철;류현수;장창두
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.85-91
    • /
    • 2004
  • The objective of the present paper is to develop an analysis method for the correction of welding deformation of stiffened plate by line heating. In this paper, the equivalent loading method, based on the inherent strain theory, was used to analyze the heat-straightening of a stiffened plate. Equivalent loads were obtained by integrating the inherent strains which were determined from the highest temperature and the degree of restraint. Finally, the obtained equivalent loads were imposed, as applied loads, on the elastic analysis for the prediction of correction of welding deformation in stiffened plate. The proposed method is expected as a basic study in heat-straightening analysis of welding deformation in large scale block.

THE PHYSICAL PROPERTIES OF TIN ION-FLAYED CO-CR(ELGILOY) ORTHODONTIC WIRES (TiN 피막처리된 Co-Cr계 교정용 선재의 물성)

  • KIM, Jung-Min;KWON, Oh-Won;KIM, Kyo-Han
    • The korean journal of orthodontics
    • /
    • v.28 no.3 s.68
    • /
    • pp.371-377
    • /
    • 1998
  • To estimate the possibility of clinical application of TiN ion-Plated Elgiloy(Co-Cr wire), measurements of tensile strength and hardness were made on the four tempers on each of the manufactured Elgiloy, the (heat-treated) Elgiloy for 30 minutes at $250^{\circ}C$ and the TiN ion-plated Elgiloy. For comparison, the tensile strength and hardness of Stainless Steel wires were also measured. The following are the results of the study: $\cdot$In the 4 tempers, tensile strength was the greatest in the TiN ion-plated group, followed by the heat-treated Elgiloy group and the manufactured Elgiloy group, but no statistical difference was noticed between heat-treated and manufactured Elgiloy groups(p>0.05). $\cdot$In each temper, tensile strength of ion-plated Elgiloy increased about $10kgf/mm^2$ in comparison with the values of the manufactured Elgiloy $\cdot$In yellow, green and red tempers except the blue, hardness was the greatest in ion-plated group. In the blue temper, there was no statistical difference between heat-treated and manufactured Elgiloy groups(p>0.05). $\cdot$In each temper, hardness of ion-plated Elgiloy increased about 50-90VHN in comparison with the values of the manufactured Elgiloy. $\cdot$The tensile strength of Stainless Steel wire was similar to that of the red temper of manufactured Elgiloy and the green temper of ion-plated Elgiloy.

  • PDF

A Study on Weld deformation and Straightening by heating (용접구조물의 각변형과 가열교정에 관한 연구)

  • 조시훈;김재웅
    • Proceedings of the KWS Conference
    • /
    • 2002.05a
    • /
    • pp.146-148
    • /
    • 2002
  • The welding distortion can result in problems such as dimensional inaccuracies during assembly and raise concerns on safety during service. Therefore, an accurate prediction and a reduction of the deformation are critical to improving the quality of the weldment. In this study, four cases for reducing welding distortion is proposed and it is evaluated through experiments.

  • PDF

A Study on the Optimum Line Heating Condition for Straightening a Thin Plate Welded Structure (박판재 용접 구조물의 선상 가열 교정에서 최적 조건의 선정에 관한 연구)

  • Park, Jun-Hyoung;Kim, Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.40-45
    • /
    • 2011
  • The purpose of this study is to establish the optimum line heating condition to straighten the excessive bending distortion of a thin plate welded structure. For it, the extensive FEA and experiments were performed to evaluate the effect of heat source, heating speed and position on the straightening of a thin plate welded structure. In accordance with the results obtained by FEA and experiments, the straightening effect of line heating was strongly depends on the variables used in this study. With the results, the optimum line heating condition was established by using the response surface method and verified through comparing it with the numerical analysis result.

Effects of Heating Conditions in the Straightening of Sheet Metal Distortion (박판재 변형의 가열교정에서 가열면적의 영향)

  • Park, Jun-Hyoung;Kim, Jae-Woong;Kim, Ki-Chul;Jun, Joong-Hwan
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.79-84
    • /
    • 2008
  • Use of sheet metal structure is increased in various fields such as automobile, aerospace and communication equipment industry. When this structure is welded, welding distortion is generated due to the non-uniformity of temperature distribution. Recently welding distortion becomes a matter of great importance in the structure manufacture industry because it deteriorates the product's quality by bringing about shape error. Accordingly many studies for solving the problems by controlling the welding distortion are being performed. However, it is difficult to remove all kinds of distortion by welding process, though various kinds of methods for reducing distortion are applied to production. Consequently, straightening process is operated if the high precision quality is requested after welding. The local heating method induces compression plastic deformation by thermal expansion in the heating stage and then leaves constriction of length direction in the cooling stage. Accordingly, in the case of sheet metal structure, straightening effect is expected by heating for the part of distortion. This study includes numerical analysis of straightening effect by the local heating method in distortion comes from production of welded sheet metal structure. Particularly straightening effect followed by dimensions of heating area is analyzed according to the numerical analysis. The numerical analysis is performed by constructing 3-dimensional finite element model for 0.4mm stainless steel-sheet metal. Results of this study confirm that straightening effect changes as heating area increases and the optimum value of heating area that proves the maximum straightening effect exists.

Numerical Investigation of Blackbody Design for Spaceborne Image Sensor Non-uniformity Characteristic Calibration (우주용 영상센서 출력특성 교정용 흑체 설계의 해석적 유효성 검토)

  • Kim, Hye-In;Choi, Pil-Gyeong;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.42-50
    • /
    • 2020
  • For calibration of the non-uniformity characteristics of the space-borne infrared (IR) sensor, a black body system shall provide estimated representative surface temperature at various reference temperatures by using the limited number of temperature sensors. The black body system proposed in this study has an I/F flange integrated on the rear side of the black body for installation of the heat pipe to transfer the residual heat after the black body heat-up. This design allows for obtaining a circular symmetric thermal contour of black body with low surface temperature gradient, leading to much easier representative temperature estimation. Additionally, this provides mechanically stable thermal I/F under launch and on-orbit environmental loads, as well as allowing a fail safe design by using the two heat pipes. Also, a highly accurate temperature estimation is possible even if the temperature sensors are attached on the surface on the rear side of the black body. The effectiveness of the thermal design of the proposed black body has been verified through the on-orbit thermal analysis. Based on the results, the representative surface temperature was estimated according to the number and position of the temperature sensors.

Development of Turbine Rotor Bending Straightening Numerical Model using the High Frequency Heating Equipment (고주파 가열 장비를 활용한 터빈로터 휨 교정수식모델 개발)

  • Park, Junsu;Hyun, Jungseob;Park, Hyunku;Park, Kwangha
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.269-275
    • /
    • 2021
  • The turbine rotor, one of the main facilities in a power plant, it generates electricity while rotating at 3600 RPM. Because it rotates at high speed, it requires careful management because high vibration occurs even if it is deformed by only 0.1mm. However, bending occurs due to various causes during turbine operating. If turbine rotor bending occurs, the power plant must be stopped and repaired. In the past, straightening was carried out using a heating torch and furnace in the field. In case of straightening in this way, it is impossible to proceed systematically, so damage to the turbine rotor may occur and take long period for maintenance. Long maintenance period causes excessive cost, so it is necessary to straighten the rotor by minimizing damage to the rotor in a short period of time. To solve this problem, we developed a turbine rotor straightening equipment using high-frequency induction heating equipment. A straightening was validated for 500MW HIP rotor, and the optimal parameters for straightening were selected. In addition, based on the experimental results, finite element analysis was performed to build a database. Using the database, a straightening amount prediction model available for rotor straightening was developed. Using the developed straightening equipment and straightening prediction model, it is possible to straightening the rotor with minimized damage to the rotor in a short period of time.