• Title/Summary/Keyword: 교전 효과분석

Search Result 46, Processing Time 0.029 seconds

Applying Fractals and Agent-Based Simulation to Explore the Role of Terrain in Combat Effectiveness (프랙탈 차원과 에이전트 기반 시뮬레이션을 이용한 지형이 전투효과에 미치는 영향 연구)

  • Cho, Sung-Jin;Lee, Sang-Heon
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.21-28
    • /
    • 2009
  • In the past, most of battle occurred in flatland and simple military force size gave a big influence in combat result. However, after the World War I, most of battles took place at the various terrain features such as forest, downtown, jungle and many others. Therefore, terrain factor exerts big influence on battle with weapon system in the ground warfare. However, effect of terrain has been explained only by quantitative manner in the battle. Furthermore, combat simulation and modeling applied a method that lower the combat capability of battle factors. In this paper, we present instrumentation that evaluate impact of terrain using fractal dimension. We determine the fractal dimension value by the "box counting dDimension" and density to calculate impact of terrain. Furthermore, we analyzed correlation with fractal dimension and density for battle result that obtained from the EINSTein model which is an agent-based simulation. We compare with 'Stalingrad battle' result out of battle example and analyzed. This study presented a method combat effectiveness that effect of terrain calculate quantitatively using fractal dimension.

Implementation of a tactic manager for the target motion analysis simulation of a submarine (잠수함의 표적기동분석 시뮬레이션을 위한 전술처리기의 구현)

  • Cho, Doo-Yeoun;Son, Myeong-Jo;Cha, Ju-Hwan;Lee, Kyu-Yeul;Kim, Tae-Wan;Ko, Yong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.3
    • /
    • pp.65-74
    • /
    • 2007
  • A tactic manager which can change the behavior of a simulation model according to the tactic definition file has been studied and implemented. Based on the DEVS(discrete event system specification) formalism, we generated a simulation model which is equipped with the inter ace to the tactic manager. To demonstrate the effectiveness of the tactic manager, a target motion analysis simulation of the warfare between a submarine and a surface ship is simulated.

  • PDF

Simulation of 2-color Concentric Annular Ring Reticle Seeker and Counter-countermeasure using LMS Algorithm (2-color 동심원 레티클 탐색기의 시뮬레이션 및 LMS 방법을 이용한 반대응능력)

  • 홍현기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.1990-1999
    • /
    • 2001
  • This paper presents a dynamic simulation loop that gives tracking results of 2-color concentric annular ring (CAR) reticle seeker. Our simulation tool includes the target/flare model and a proportional navigation guidance (PNG) loop. The CAR reticle system performances and the flare effects are analyzed in various scenarios. When a flare is present in the field of view (FOV), the simulation results show that the reticle seeker cannot keep a precise target tracking. In this paper, we propose 2-color counter-countermeasure (CCM) using the least mean square (LMS) method to cope with a presence of IR flare. The proposed method makes a simultaneous process in two infrared (IR) wavelength bands: MWIR add SWIR. The simulation results have shown that our adaptive IRCCM algorithm can achieve an effective cancellation of the flare signal with a relatively high intensity.

  • PDF

Reverse Simulation Software Architecture for Required Performance Analysis of Defense System (국방 시스템의 요구 성능 분석을 위한 역 방향 시뮬레이션 소프트웨어 아키텍처)

  • Hong, Jeong Hee;Seo, Kyung-Min;Kim, Tag Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.750-759
    • /
    • 2015
  • This paper focuses on reverse simulation methods to find and analyze the required performance of a defense system under a given combat effectiveness. Our approach is motivated that forward simulation, that traditionally employs the effectiveness analysis of performance alternatives, is not suitable for resolving the above issue because it causes a high computational cost due to repeating simulations of all possible alternatives. To this end, the paper proposes a reverse simulation software architecture, which consists of several functional sub-modules that facilitate two types of reverse simulations according to possibility of inverse model design. The proposed architecture also enable to apply various search algorithms to find required operational capability efficiently. With this architecture, we performed two case studies about underwater and anti-air warfare scenarios. The case studies show that the proposed reverse simulation incurs a smaller computational cost, while finding the same level of performance alternatives compared with traditional forward simulation. Finally we expect that this study provides a guide those who desire to make decisions about new defense systems development.

Simulation and Analysis of Response Plans against Chemical and Biological Hazards (화학 생물 위험 대응 시뮬레이션 및 분석)

  • Han, Sangwoo;Seo, Jiyun;Shim, Woosup
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.49-64
    • /
    • 2021
  • M&S techniques are widely used as scientific means to systematically develop response plans to chemical and biological (CB) hazards. However, while the theoretical area of hazard dispersion modeling has achieved remarkable practical results, the operational analysis area to simulate CB hazard response plans is still in an early stage. This paper presents a model to simulate CB hazard response plans such as detection, protection, and decontamination. First, we present a possible way to display high-fidelity hazard dispersion in a combat simulation model, taking into account weather and terrain conditions. We then develop an improved vulnerability model of the combat simulation model, in order to simulate CB damage of combat simulation entities based on other casualty prediction techniques. In addition, we implement tactical behavior task models that simulate CB hazard response plans such as detection, reconnaissance, protection, and decontamination. Finally, we explore its feasibility by analyzing contamination detection effects by distributed CB detectors and decontamination effects according to the size of the {contaminated, decontamination} unit. We expect that the proposed model will be partially utilized in disaster prevention and simulation training area as well as analysis of combat effectiveness analysis of CB protection system and its operational concepts in the military area.

Effectiveness Analysis of Chemical Warfare System through Interoperation between Engineering Level and Engagement Level Models : Methodology and Environment (공학급/교전급 모델의 연동 시뮬레이션을 통한 화학전 효과도 분석 : 방법론 및 구현 환경)

  • Seok, Moon-Gi;Song, Hae-Sang;Kim, Tag-Gon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.71-81
    • /
    • 2014
  • It is an important issue to evaluate the effectiveness of chemical warfare through modeling and simulation(M&S) technology. In this paper, we propose the M&S methodology and environment for the chemical warfare for effectiveness analysis. In detail, for modeling perspective, we propose three fundamental component models according to their behaviors, which are a chemical weapon, a detecting device system, and an engaging unit system. Among proposed models, the chemical weapon and the detecting device system models are represented by engineering-level system models, whereas the engaging unit system model are described as an engagement-level system model. For simulation perspective, we apply a hybrid simulation environment using High Level Architecture (HLA) to interoperate with the proposed engineering and engagement-level models. The proposed M&S methodology and environment enables to evaluate the effectiveness of the chemical warfare system considering the doctrines, the performance of device or weapon, and weather factors. To verify the efficiency of the proposed methodology and environment, we experimented three categorized case studies, which are related with those considering factors.

Combat Entity Based Modeling Methodology to Enable Joint Analysis of Performance/Engagement Effectiveness - Part 2 : Detailed Model Design & Model Implementation (성능/교전 효과도의 상호 분석이 가능한 전투 개체 기반의 모델링 방법론 - 제2부 : 상세 모델 설계 및 모델 구현)

  • Seo, Kyung-Min;Choi, Changbeom;Kim, Tag Gon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.235-247
    • /
    • 2014
  • Based on two dimensional model partition method proposed in Part 1, Part 2 provides detailed model specification and implementation. To mathematically delineate a model's behaviors and interactions among them, we extend the DEVS (Discrete Event Systems Specification) formalism and newly propose CE-DEVS (Combat Entity-DEVS) for an upper abstraction sub-model of a combat entity model. The proposed CE-DEVS additionally define two sets and one function to reflect essential semantics for the model's behaviors explicitly. These definitions enable us to understand and represent the model's behaviors easily since they eliminate differences of meaning between real-world expressions and model specifications. For model implementation, upper abstraction sub-models are implemented with DEVSim++, while the lower sub-models are realized using the C++ language. With the use of overall modeling techniques proposed in Part 1 and 2, we can conduct constructive simulation and assess factors about combat logics as well as battle field functions of the next-generation combat entity, minimizing additional modeling efforts. From the anti-torpedo warfare experiment, we can gain interesting experimental results regarding engagement situations employing developing weapons and their tactics. Finally, we expect that this work will serve an immediate application for various engagement warfare.

The Study on Consistency of Simulation Logic about Close Combat Damage Assessment among Constructive Models : Based on Combined Arms Integrated Interoperability System (워게임모델간 근접전투 피해평가 모의논리 일치에 관한 연구 : 제병협동통합연동체계를 중심으로)

  • Moon, Ho-Seok;Kim, Hyung-Se;Hwang, Myung-Sang;Bae, Hyun-Wung;Lee, Dong-Keun
    • Journal of the military operations research society of Korea
    • /
    • v.37 no.1
    • /
    • pp.87-97
    • /
    • 2011
  • In this paper, we propose a new close combat expert system to overcome the difference of combat damage assessments between combat units belong to their own model in Combined Arms Integrated Interoperability System(CAIIS) which will be deployed in the early future. When it happens to engage in a battle among combat units belong to their own model in CAIIS, the result of damage assessment is different severely. This is related to CAIIS's confidence and need to be overcome. We propose the expert system for close combat damage assessment with a decision tree. Simulation results show that the proposed expert system is valid well. Because the proposed expert system is made not as an independent system but as an inner module type of CAIIS, CAIIS will be simpler system than we expect. And we will hope to reduce the cost of CAIIS.

A Converting Method to Simulate DEVS Models on AddSIM (컴포넌트기반 체계모의환경(AddSIM)에서 실행하기 위한 DEVS 모델 변환 방법)

  • Kim, Dohyung;Oh, Hyunshik;Park, Juhye;Park, Samjoon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.488-493
    • /
    • 2015
  • An AddSIM(Adaptive distributed and parallel Simulation environment for Interoperable and reusable Models) is an integrated engagement simulation environment with high-resolution weapon system models for estimation and analysis of their performance and effectiveness. AddSIM can simultaneously handle the continuous dynamical system models based on continuous time, and command, control(C2) and network system models based on a discrete event. To accommodate legacies based on DEVS(Discrete Event System Specification) modeling, DEVS legacies must first be converted into AddSIM models. This paper describes how to implement DEVS models on AddSIM. In this study a method of mapping from hierarchical DEVS models to AddSIM players was developed: The hierarchical DEVS model should be flattened into a one layered model and four DEVS functions of the model, external transition, internal transition, output and time advance, should be mapped into functions of the AddSIM player.

Take-Over Time Determination for High-Velocity Targets in a Multiple Radar System (다중 레이다 시스템의 고속표적 인계 시점 결정기법 연구)

  • Park, Soon-Seo;Jang, Dae-Sung;Choi, Han-Lim;Kim, Eun-Hee;Sun, Woong;Lee, Jong-Hyun;Yoo, Dong-Gil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.307-316
    • /
    • 2016
  • A multiple radar system is comprised of early warning radar for fast detection of a target and air defense radar for precision intercept. For this reason, target take-over process is required between the two radars. The target take-over should be performed at an appropriate time by consideration of stable tracking and effective fire control. In this paper, operation characteristics of multiple radar system are analyzed and target take-over time determination method using estimation of target tracking performance is proposed for high-velocity targets. The proposed method is validated with ballistic target defense scenarios in the developed integrated simulator.