• Title/Summary/Keyword: 교량 받침

Search Result 138, Processing Time 0.022 seconds

Stability of Analytical Fragility Curve of Bridge on Elastic Modulus (탄성계수의 변화에 따른 교량의 해석적 손상도 곡선의 안정성)

  • Lee, Jong-Heon;Kang, Shin-Yeol;Kim, Tae-Hyeong;Lee, Soo-Choul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.175-182
    • /
    • 2008
  • In performing a risk analysis of structure for earthquake, it is imperative to identify the vulnerability of structures associated with various stages of damage. And the earthquake resisting capability is needed for structures like bridge. So the damage analysis of bridges with or without isolator for earthquake effects is necessary. In this paper, the risk analysis of seismic isolated LRB bridges considering earthquake effects such as PGA, PGV, SA, SV, and SI is performed using fragility curves to assure the earthquake resisting capability of the structures. And, the stability of fragility curve is investigated with respect to elastic modulus.

Stability of Analytical Fragility Curve of Bridge on Earthquake (지진의 변화에 따른 교량의 해석적 손상도 곡선의 안정성)

  • Lee, Jong-Heon;Lee, Soo-Choul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.145-152
    • /
    • 2009
  • In performing a risk analysis on structure for earthquake, it is imperative to identify the vulnerability of structures associated with various stages of damage. And the earthquake resisting capability is needed for structures like bridge. So the damage analysis of bridges with or without isolator for earthquake effects is necessary. In this paper, the risk analysis of seismic isolated LRB bridges considering earthquake effects such as PGA, PGV, SA, SV, and SI is performed using fragility curves to assure the earthquake resisting capability of the structures. And, the stability of fragility curve is investigated with respect to input earthquake.

Evaluation of Characteristics on Negative Reactions of Simply Supported Curved Box Girder Bridges with Elastomeric Bearings (탄성받침을 가지는 단경간 곡선 강박스거더 교량의 부반력 특성평가)

  • Kim, Kyungsik;Lee, Heejeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • Horizontally curved bridges are subjected to torsional loads by their vertical dead loads only as well as eccentric loads, which cause negative reactions at supports. In this paper, effects of bridge curvature on vertical reactions at supports are investigated for 48.8 m length simple span steel box girder bridges with elastomeric bearings by varying curvature angle from 0.49 to 1.35 rad. In order to expect magnitude and direction of reactions including possibility of negative reactions, reaction evaluation equations have been analytically developed by separating a superstructure of curved bridge into independent components. Concrete slabs and bottom flanges in steel box section are assumed geometrical annular sectors in area dimension, and top flanges and webs that have very narrow projected areas are assumed geometrical arcs in line dimension. Proposed equations have relatively simple forms and prediction values are on very good agreement with those from finite element analyses by difference of 1% order.

Pier Stiffness and Bridge Collapse Mechanism (교각 강성과 교량의 붕괴기구)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.187-192
    • /
    • 2016
  • While structures are designed within elastic range by other designs, plastic behavior of structures should be verified and controlled in order to prevent structural collapse by the earthquake resistant design. No Collapse Requirement for typical bridges is to avoid falling down of superstructure by way of plastic behavior of certain structural elements and to operate emergency vehicles after earthquake. Such plastic behavior is restricted to connections or pier columns and appropriate measures are required for each case. Earthquake Resistant Design part of Roadway Bridge Design Code provides design processes for Ductile Collapse Mechanism by forming plastic hinges at pier columns. Also for bridges with reinforced concrete piers ductility-based design processes are provided as an appendix constructing Brittle Collapse Mechanism with connection yielding. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected and No Collapse Design procedure considering both Ductile and Brittle Collapse Mechanism is proposed together with revisions required for the Earthquake Resistant Design part.

A Study of Structural Behavior Analysis of Inegral and Semi-Integral Hybrid Slab Bridge (일체식 및 반일체식 복합슬래브 교량의 구조거동 분석에 관한 연구)

  • Choi, Young-Guk;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • Girder bridges and slab bridges are equipped with a system consisting of a flexible joint unit, support, inverted T shaped abutment, and a separate connecting slab structure. These systems have problems such as an increase in cost due to frequent breakage of the expansion joints and a decrease in durability due to a structure with low moment redistribution. To improve these problems, propose Inegral and Semi-Integral Hybrid Slab Bridge and examine the safety through structural analysis. As a result of the review, Inegral and Semi-Integral Hybrid Slab Bridge was the section stiffness is small. but it is confirmed that the structural safety, ductility and flexibility are higher than existing bridges because the moment redistribution and the force transmission are surely performed.

Seismic Risk Assessment of Bridges Using Fragility Analysis (지진취약도분석을 통한 교량의 지진위험도 평가)

  • Yi, Jin-Hak;Youn, Jin-Yeong;Yun, Chung-Bang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.31-43
    • /
    • 2004
  • Seismic risk assessment of bridge is presented using fragility curves which represent the probability of damage of a structure virsus the peak ground acceleration. In theseismic fragility analysis, the structural damage is defined using the rotational ductility at the base of the bridge pier, which is obtained through nonlinear dynamic analysis for various input earthquakes. For the assessment of seismic risk of bridge, peak ground accelerations are obatined for various return periods from the seismic hazard map of Korea, which enables to calculate the probability density function of peak ground acceleration. Combining the probability density function of peak ground acceleration and the seismic fragility analysis, seismic risk assessment is performed. In this study, seismic fragility analysis is developed as a function of not the surface motion which the bridge actually suffers, but the rock outcrop motion which the aseismic design code is defined on, so that further analysis for the seismic hazard assessment may become available. Besides, the effects of the friction pot bearings and the friction pendulum bearings on the seismic fragility and risk analysis are examined. Lastly, three regions in Korea are considered and compared in the seismic risk assessment.

Shear Characteristics of Elastomeric Bearing Rubber Deteriorated by Accelerated Heat Aging(2): Chloroprene Rubber (가속열 노화로 열화된 탄성받침 고무재료의 전단 특성(2): 합성고무)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.103-110
    • /
    • 2021
  • Elastomeric bearings composed of flexible rubber materials and steel reinforcement plates are widely used for seismic retrofit of bridges due to their excellent vertical stiffness and flexible lateral stiffness. Especially, it has the advantages of simple construction and low cost. Chloroprene rubber, a type of rubber material, has greater resistance to aging than natural rubber, but its performance is also degraded due to various deterioration factors. Although these aging characteristics are not reflected in the seismic design standards and seismic performance evaluation guidelines, it is reasonable to reflect this when related studies are accumulated. For chloroprene rubber, accelerated heat aging test was performed with variables of heating temperatures and exposure time to analyze shear characteristics. As aging progresses the maximum shear stress and shear strain decrease. Also, the shear stiffness is greatly increased at the same shear strain.

Hybrid Control of a Benchmark Cable-Stayed Bridge Considering Nonlinearity of a Lead Rubber Bearing (납고무받침의 비선형성을 고려한 벤치마크 사장교의 복합제어)

  • Park, Kyu-Sik;Jung, Hyun-Jo;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.51-63
    • /
    • 2002
  • This paper presents a hybrid control strategy for seismic protection of a benchmark cable-stayed bridge, which is provided as a testbed structure for the development of strategies for the control of cable-stayed bridges. This benchmark problem considers the cable-stayed bridge that is scheduled for completion in Cape Girardeau, Missouri, USA in 2003. Seismic considerations were strongly considered in the design of this bridge due to the location of the bridge in the New Madrid seismic zone and its critical role as a principal crossing of the Mississippi river. Based on detailed drawings of this cable-stayed bridge, a three-dimensional linearlized evaluation model has been developed to represent the complex behavior of the bridge. A set of eighteen evaluation criteria has been developed to evaluate the capabilities of each control strategy. In this study, a hybrid control system is composed of a passive control system to reduce the earthquake-induced forces in the structure and an active control system to further reduce the bridge responses, especially deck displacements. Conventional base isolation devices such as lead rubber bearings are used for the passive control design and Bouc-Wen model is used to simulate the nonlinear behavior of these devices For the active control design, ideal hydraulic actuators are used and on $H_2$/LQG control algorithm is adopted. Numerical simulation results show that the performance of the proposed hybrid control strategy is quite effective compared to that of the passive control strategy and slightly better than that of the active control strategy. The hybrid control method is also more reliable than the fully active control method due to the passive control part. Therefore, the proposed hybrid control strategy can effectively be used to seismically excited cable-stayed bridges.

Correlation Analysis between Damage of Expansion Joints and Response of Deck in RC Slab Bridges (RC 슬래브교의 신축이음 손상과 바닥판 응답과의 상관관계 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Park, Ki-Tae;Jung, Kyu-San;Kim, Yu-Hee;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.245-253
    • /
    • 2021
  • RC slab bridges account for the largest portion of deteriorated bridges in Korea. However, most RC slabs are not included in the first and second classes of bridges, which are subject to bridge safety management and maintenance. The highest damaged components in highway bridges are the subsidiary facilities including expansion joints and bearings. In particular, leakage through expansion joints causes deterioration and cracks of concrete and exposure of reinforced bars. Therefore, this study analyzed the effect of adhesion damage at expansion joints on the response of the deck in RC slab bridges. When the spacing between the expansion joints at both ends was closely adhered, cracks occurred in the concrete at both ends of the deck due to the resistance rigidity at the expansion joints. Based on the response results, the correlation analysis between displacements in the longitudinal direction of the expansion joint and concrete stress at both ends of the deck for each damage scenario was performed to investigate the effect of the occurrence of damage on the bridge behavior. When expansion joint devices at both sides were damaged, the correlation between displacement and stress showed a low correlation of 0.18 when the vehicles proceeded along all the lanes. Compared with those in the intact state, the deflections of the deck in the damaged case at both sides showed a low correlation of 0.34 to 0.53 while the vehicle passed and 0.17 to 0.43 after the vehicle passed. This means that the occurrence of cracks in the ends of concrete changed the behavior of the deck. Therefore, data-deriven damage detection could be developed to manage the damage to expansion joints that cause damage and deterioration of the deck.

Dynamic Responses of Multi-Span Simply Supported Bridges under Bi-Directional Seismic Excitations (2방향 지진하중을 받는 다경간 단순교의 동적거동분석)

  • Lee, Sang-Woo;Kim, Sang-Hyo;Mha, Ho-Seong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.21-32
    • /
    • 2004
  • A Seismic analysis procedure of bi-directional brideg motions is developed by using mechanical bridge model. A three-dimensional mechanical model can consider major phenomena under bi-directional seismic excitations, such as nonlinear pier motion under biaxial bending, pounding and bearing damage due to the rotaion of the superstructure, etc. The analyses utilizing the uni-directional and the bi-directional bridge model for the 3-span simply supported bridge are then performed. The seismic responses in two cases are examined and compared by investigating the relative displacements of each superstructure to both ground and adjacent superstructures and the restoring forces of RC pier. The analysis using either the uni-directional model or bi-directional model is acceptable for estimating the displacement responses of a bridge, but the bi-directional analysis is found to give more conservative results for resisting forces of RC piers. To make general conclusions, therefore, the analysis using the bi-directional bridge model should be performed in evaluating the seismic safety of bridges.