• Title/Summary/Keyword: 광 촉매

Search Result 164, Processing Time 0.025 seconds

Oxidation Reaction of Hydrazobenzene by Activated Catalysts of Pentadentate Schiff Base Cobalt(Ⅲ)-O2 Complexes in Methanol Solvent (메탄올 용매에서 산소 첨가된 다섯자리 Schiff Base Cobalt(Ⅲ) 착물들의 활성 촉매에 의한 Hydrazobenzene의 산화반응)

  • No, Yun Jeong;Park, Dong Hwa;Jo, Gi Hyeong;Kim, Sang Bok;Choe, Yong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.4
    • /
    • pp.302-308
    • /
    • 1994
  • Homogeneous catalytic oxidation of hydrazobenzene was investigated by employing pentadentate Schiff base complexes such as [Co(II)(Sal-DPT)(H$_2$O)] and [Co(II)(Sal-DET)(H$_2$O)] in oxygen-saturated methanol solvent. The oxidation product of hydrazobenzene(H$_2$AB) was trans-azobenzene(trans-AB). The rate constants of oxidation reaction measured by UV-visible spectrophotometry were observed as $6.06{\times}10^{-3}sec^{-1}$ for [Co(II)(Sal-DPT)(H$_2$O)] and $2.50{\times}10^{-3}sec^{-1}$ for [Co(II)(Sal-DET)(H$_2$O)]. The mechanism of oxidation reaction for H$_2$AB by homogeneous activated catalysts has been proposed as following. H$_2$AB + Co(II)(L)(H$_2$O) + O$_2$ $\rightleftharpoons^K_{MeOH}Co(III)(L)O_2{\cdot}H_2AB + H_2O\longrightarrow^{k}Co(II)(L) + trans-AB + H_2O_2$ (L: Sal-DPT and Sal-DET)

  • PDF

Syntheses of Metalloporphyrins and Polymer-bonded Metalloporphyrin and Their Catalytic Effects on Benzoquinone Photoreduction (Metalloporphyrins 와 Polymer-bonded Metalloporphyrin 의 합성 및 Benzoquinone 광환원반응의 촉매효과)

  • Kyu-Ja Whang;Hee-Kyung Lee;Yong-Keun Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.569-574
    • /
    • 1991
  • Six free base porphyrins were synthesized by reacting pyrrole with benzaldehyde or its derivatives and then reacted with metal chlorides to prepare corresponding metal complexes. In addition, polymer-bonded porphyrins were synthesized by treating chloromethylated styrene-divinyl benzene (1%) copolymer beads with meso-tetra (p-aminophenyl)porphyrin (TNPP) solution and then treated with cupric chloride to obtain Cu(Res-NH-TPP-$NH_2$). The porphyrin compounds were characterized by visible, inffrared and electron spin resonance spectral analyses. The metal contents of metalloporphyrins were determined by atomic adsorption spectrophotometry. The synthesized porphyrin compounds were subsequently examined for their catalytic strength and found the activity to increase in the following order: free base porphyrins; metalloporphyrins; polymer-bonded metalloporphyrin. Among metalloporphyrins, Cu-TNPP showed the greatest catalytic power.

  • PDF

Kinetics and Mechanism for Redox Reaction of cis-$[Co(en)_2(N_3)_2]^+$ with Fe(II) in Acidic Solution (산 촉매하에서 cis-$[Co(en)_2(N_3)_2]^+$ 와 Fe(II) 와의 산화-환원반응에 대한 반응속도와 메카니즘)

  • Byung-Kak Park;Kwang-Jin Kim;Joo-Sang Lim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.309-314
    • /
    • 1989
  • A kinetic study was carried out for the redox reaction of cis-$[Co(en)_2(N_3)_2]^+$ with Fe(II) in acidic solution by spectrophotometric methods. This redox reaction system have been found to show a third order for overall reaction as the respective first order with respect to reactant cis-$[Co(en)_2(N_3)_2]^+$, Fe(II), and $H^+$ catalyst. The activation parameters, ${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$, were obtained as 14.2Kcal/mol and -16.7 e.u., respectively. On the basis of the kinetic data, we suggest that the redox reaction system proceeds via inner sphere mechanism. The rate equation derived from the proposed mechanism is in agreement with the observed rate equation.

  • PDF

Characteristics of MEK Degradation using TiO2 Photocatalyst in the Batch-type Reactor-Metal Doping Effect (회분식 반응기에서 TiO2 광촉매의 MEK 분해특성-금속담지영향)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1579-1584
    • /
    • 2015
  • In photocatalytic reaction, the doping of metal matter can alter the titania surface properties. As such the metal matter can increase the rate of the reaction. The influence of metal doping and calcination condition of $TiO_2$ photocatalyst was investigated at the batch-type photoreactor. Several metal matters were doped to the $TiO_2$ catalyst to improve photodegradation efficiency. During the experiments, water content was 3wt%, and reactor temperature was $40^{\circ}C$. Palladium-doped $TiO_2$ was found to be the best, where as platinum or tungsten-added also showed good results. Additional doping of platinum or tungsten on Pd/$TiO_2$ had no increase on the removal efficiency. To obtain proper calcination condition, various experiments about calcination temperature and time were carried out. As a result, the optimum calcination condition was temperature of $400^{\circ}C$, time of 1 hour.

Electrochemical Technologies : Water Treatment (전기화학공학 기술 : 수처리 공정)

  • Lee, Jaeyoung;Lee, Jae Kwang;Uhm, Sunghyun;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.235-242
    • /
    • 2011
  • This perspective describes recent advances made in the development of various electrochemical technologies to treat waste water containing organic pollutants, reducible/oxidizable and non-reducible/non-oxidizable anions and cations using redox reactions on the solid surface as well as at the interface between solid electrode and liquid electrolyte. Some of representative multiplexing and hybrid electrochemical treatment technologies are discussed, which have great advantages of high efficiency, stability and cost-effective instrumentation without the need of considering non-specific conditions such as high-temperature and high-pressure; however, choices and usages of electrode materials are absolutely critical issues.

Spectrophotometric Determination of Trace Selenium in Aqueous Solutions by Catalytic Reaction (촉매반응을 이용한 수용액중 흔적량 셀렌의 분광광도법 정량)

  • Lee, Seung Hwa;Choe, Jong Mun;Choe, Hui Seon;Kim, Yeong Sang
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.5
    • /
    • pp.351-358
    • /
    • 1994
  • The spectrophotometric determination of trace selenium(Ⅳ) using its catalytic reaction has been studied in aqueous solutions. The catalytic reaction of phenylhydrazine hydrochloride with selenium(Ⅳ) in an acidic aqueous medium produces benzenediazonium ion which will be converted into a red-coloured azo dye by coupling with H-acid(8-amino-1-naphtol-3,6-disulfonic acid disodium salt). For the reaction, the experimental conditions such as amounts of the reagents and pH of the sample solutions were optimized. After 15 ml of the sample solution was treated with 1 ml of 0.1 M EDTA solution to mask $Fe^{3+}$, etc., 1 ml of 0.06 M phenylhydrazine hydrochloride, 1 ml of 0.02 M H-acid, and 3 ml of 0.3 M-$KClO_3$ were added into the solution, sequentially. The solution was adjusted to pH 1.4 with HCl. After it was heated in a steam bath for 30 minutes, the solution was cooled down to a room temperature and then diluted to 25 ml with deionized distilled water. A blank solution for the absorbance measurement was prepared from the deionized water. The absorbance was measured at 527 nm. Using the above procedure, the trace amount of selenium was determined in natural waters such as tap, river and pond waters by a standard curve method and recoveries of Se spiked to samples were also obtained. From the recoveries of 104 to 111%, it could be concluded that this method was applicable to the quantitative determination of ng/ml level of selenium in natural waters.

  • PDF

Synthesis of Ti-SBA-15 Doped with Lanthanide Ions and Their Photocatalytic Activity (란탄족 이온이 도핑된 Ti-SBA-15의 합성 및 그들의 광촉매 활성)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Ti-SBA-15 catalysts doped with lanthanide ions (Ln/Ti-SBA-15) were successfully synthesized using conventional hydrothermal method. In addition, they were characterized by XRD, FT-IR, DRS, BET, and PL. The activity of these materials on the photocatalytic decomposition of methylene blue under ultraviolet light irradiation was also examined. Ti-SBA-15 catalysts doped with various lanthanide ions maintained their mesoporous structure. The pore size and pore volume of Ln/Ti-SBA-15 materials decreased but their surface area increased upon the doping of lanthanide ion. Ln/Ti-SBA-15 materials exhibited the type IV nitrogen isotherm with desorption hysteresis loop type H2, which was characteristic of mesoporous materials. The size of hysteresis increased in the doping of lanthanide ions on Ti-SBA-15 material. There was no absorption in the visible region (> 400 nm) regardless of the doping of lanthanide ions to TiO2 particles, while the broad bands at 220 nm appeared at the Ln/Ti-SBA-15 samples, indicating the framework incorporation of titanium into SBA-15. 1 mol% Pr/ Ti-SBA-15 catalysts showed the highest photocatalytic activity on the decomposition of methylene blue but the Ti-SBA-15 catalysts doped with Eu, Er, and Nd ions showed lower activity compared to pure Ti-SBA-15 catalyst. The PL peaks appeared at about 410 nm at all catalysts while the excitonic PL signal was proportional to the photocatalytic activity for the decomposition of methylene blue.

Properties of Low-Temperature Sol-Gel TiO2 Thin Films with Catalyst Content (졸-겔법으로 제작된 저온 TiO2 박막의 촉매농도에 따른 광분해 특성 분석)

  • Hong, Hyun-Joo;Heo, Min-Chan;Hahn, Sung-Hong;Kim, Eui-Jung;Lee, Chung-Woo;Joo, Jong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.296-302
    • /
    • 2006
  • ILow-temperature $TiO_2$ sol was synthesized with various catalyst contents by using a sol-gel method. $TiO_2$ thin films were produced by a dip-coating method and their optical, structural and photocatalytic properties were examined. Transmittance of $TiO_2$ thin films with 0.10 mol, 0.25 mol, 0.50 mol and 0.75 mol catalyst content showed high transmittance in the visible range. XRD results showed the anatase-to-rutile phase transition was accelerated with increasing catalyst content and the crystallinity size of the $TiO_2$ thin films increased with increasing catalyst content. SEM results indicated that the particle size of the $TiO_2$ thin films was the smallest with catalyst content of 0.25 mol. Photocatalytic results showed that methylene blue was completely decomposed in the presence of anatase film prepared with 0.10 mol, 0.25 mol and 0.50 mol catalyst content.

Experimental study on the phase change of a graphite using piston cylinder, DAC and Synchrotron Radiation (피스톤 실린더와 DAC 및 방사광을 이용한 흑연의 상변화 실험 연구)

  • 나기창;김영호
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.129-134
    • /
    • 1996
  • Possibile phase transitions of graphite have been examined experimentally using piston cylinder and DAC with synchrotron radiation. The graphite-forming processes in high pressure and low temperature conditions and the phase change under super high pressure were studied in the conditions of 0.7 Gpa and 270-$360^{\circ}C$ in piston cylinder and under 39.6 Gpa in DAC. In the piston cylinder experiment using LiCO3as a catalyzer, we could synthesize disordered graphites whose TGD values change progressively form 9 to 53. It was known that the temperature of graphitization in 0.7 Gpa is between 270-$300^{\circ}C$. Numerous unknown XRD peaks were observed in the super high-pressure experiment. However, it is difficult to pick up a new peak of a hexagonal diamond phase. Application of the different high pressure apparatus as well as a peculiar X-ray source and various graphite specimen would be useful for super high-pressure experiment, and more detailed works are needed to characterize the unknown phase(s) observed in this study.

  • PDF

Photocatalysis: From Environmental Remediation to Energy Conversion (환경, 에너지 분야에서의 광촉매 활용기술)

  • Choe, Ji-Na;Kim, Beom-Sik;Gwon, Sun-Il;Yu, Ji-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.72.1-72.1
    • /
    • 2013
  • 광촉매 활용 기술은 수질 및 대기 중의 난분해성 오염 물질 처리 등의 환경 분야에서부터 항균 및 초친수성 기능을 활용한 소재 분야, 그리고 태양광을 이용한 물분해 수소 제조 및 이산화탄소의 전환 등의 인공 광합성 연구 분야까지 그 응용분야가 대단히 넓은 기술이다. 본 강연에서는 이러한 광촉매의 반응 원리와 대표적인 응용분야인 환경 정화 분야 및 에너지 분야에서의 광촉매 기술의 활용, 그리고 현재 광촉매 관련 연구 분야의 주요 관심사 및 미래 성장을 위한 과제 등을 포괄적으로 다루고자 한다. 광촉매 반응은 반도체의 따간격 에너지 흡수에 따라 전자와 정공(+전하를 가진 전자와 같은 거동을 하는 입자)가 발생한 뒤에 일어나는 계면에서의 전자전달 반응을 기초한다. 발생한 정공과 전자는 각각 산화와 환원 반응을 유발하며 이러한 산화, 환원반응을 통해 다양한 분야로의 응용이 가능하다. 환경 정화 분야의 경우, 정공이 물 혹은 공기 속에 존재하는 수분과 반응하여 생성되는 OH 라디칼 ($OH{\cdot}$)의 강력한 산화력을 주로 이용하게 된다. OH 라디칼에 의한 다양한 난분해성 유기물질의 산화분해 반응을 활용하여 고도처리공정이 가능하게 되며, 수계 난분해성 유기오염물질의 제거뿐만 아니라 대기 중에 존재하는 VOCs, 악취물질 등의 분해도 가능하며, 아울러 바이러스나 박테리아와 같은 세균을 제거할 수 있는 것으로 알려져 있다. 한편, 물 분해 수소제조 및 이산화탄소의 전환과 같은 에너지 분야 응용의 경우, 전도대의 전자를 활용한 환원반응에 기초한다. 앞서 언급한 다양한 응용분야에서 활용될 수 있는 광촉매의 종류 또한 매우 다양하며, 이사화티탄(TiO2)는 대표적인 고효율 상용 광촉매이다. 아울러, 원하는 응용 분야에서의 광활성이 높은 새로운 광촉매의 제조 및 평가가 꾸준히 진행되고 있으며, 그 가운데 태양광의 가장 많은 영역을 차지하고 있는 가시광 활성을 갖는 광촉매 개발에 관한 연구가 활발히 수행되고 있다. 이에, 현재까지 개발된 다양한 가시광 광촉매 시스템에 대한 소개 및 각 광촉매 응용분야에서 최근 새롭게 대두되고 있는 이슈들에 대하여 중점적으로 고찰하고자 한다.

  • PDF