• Title/Summary/Keyword: 광 신호처리

Search Result 228, Processing Time 0.035 seconds

Modal Transmission-Line Theory for Optical Diffraction of Periodic Circular 2D-Grating (주기적인 원형 2D-격자의 회절에 대한 모드 전송선로 이론)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.247-252
    • /
    • 2019
  • The diffraction properties of optical signals by multi-layered periodic structures is formulated in two-dimensional space by using Fourier expansions associated with basic grating profile. The fields in each layer are then expressed in terms of characteristic modes, and the complete solution is found rigorously by using a modal transmission-line theory(MTLT) to address the pertinent boundary-value problems. Such an approach can treat periodic arbitrary gratings containing arbitrarily shaped dielectric components, which may generally have optical properties along directions that are parallel or perpendicular to the multi-layers. This paper illustrates the present approach by comparing our numerical results with data reported in the past for simple periodic circular 2D structures. In addition, this proposed theory can apply easily for more complex configurations, which include multiple periodic regions with several possible canonic shapes and high dielectric constants.

A Study on Selection of Optimal Satellite Imagery by Disaster Type (재해 유형별 최적 위성 영상 선정에 관한 연구)

  • Lim, SoMang;Kang, Ki-mook;Yu, WanSik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.279-279
    • /
    • 2021
  • 위성영상정보는 센서의 종류, 취득, 분석, 재난과 위성영상 특성 매칭 등의 제약으로 재난 상황에서 제한적으로 사용되었다. 일반적으로 인공위성의 종류는 탑재한 센서의 정보제공 능력 범위에 따라 분류 가능하며 이에 따라 대상 범위가 결정된다. 본 연구에서는 재난의 예측, 탐지, 사후처리를 위한 위성자료의 취득과 활용을 위해 다양한 위성과 탑재된 센서의 궤도, 공간 해상도, 파장대 등의 특성에 대하여 분석하고 재난유형별로 최적 위성영상을 선정하였다. 행정안전부에서는 재난과 재해의 유형을 자연재난(10종)과 사회재난(27종)으로 분류하였다. 위성영상 활용이 가능한 재난 유형은 가시적으로 확인이 가능한 자연재난에 해당하며 그 중 태풍, 홍수, 가뭄, 산불 등 총 4종의 재난유형별로 가용한 최적의 위성영상을 분석하였다. 재난관측에 사용 가능한 대표적인 탑재체의 종류는 극궤도 지구관측 위성에서 광학과 SAR로 구분할 수 있다. 각 기본 특성에 따라 제공되는 정보의 종류가 분류되며 광학 센서는 태양복사 및 지구복사에너지 파장 영역 중 가시광선-근적외선-단파적외선-열적외선 파장대 영역의 분광 정보를 제공할 수 있는 다중 밴드들로 구성된다. 지표의 특정 대상이나 물질을 탐지하고 변화를 감지·분석하는데 유용하여 홍수, 태풍, 지진 등 자연 및 사회 재난·재해 관측에 유용하게 이용된다. SAR 센서는 장파장의 전자기파를 방출한 후 돌아오는 신호를 활용하여 대상에 대한 정보를 획득한다. 대기의 효과 및 요소를 투과하는 주파수 대역별 장파장 밴드 정보를 활용하여 고해상도의 대상 표면, 위치, 형태 등의 정보를 측량 및 관측하므로 중·광역 지역에 제약 없이 영상정보를 획득할 수 있어 산사태, 홍수, 지진, 등의 재난 모니터링에 유용하다. 이러한 다종 위성별 센서들의 특징(공간 해상도, 파장대별 밴드 특성, 관측폭, 재방문 주기 등)들을 분석하여 재난유형별로 가용한 무료/상용 지구관측위성을 분류한 결과 태풍에는 광역관측, 정지궤도 위성, 홍수에는 광학 및 SAR 고해상도 위성, 가뭄은 광역관측, 다분광 광학 위성 그리고 산불에는 정지궤도, 광학, SAR 위성이 적합함을 알 수 있다.

  • PDF

Development of the Handy Non-contact Surface Roughness Measurement Device by using the Optical Fiber Sensor (광섬유센서에 의한 간이 비접촉 표면조도 측정기의 개발)

  • Hong, Jun-Hee
    • 대한공업교육학회지
    • /
    • v.34 no.2
    • /
    • pp.346-362
    • /
    • 2009
  • The purpose of this study was to develop the handy non-contact measurement device of the surface roughness by using the optical fiber sensor. The advantages of fiber optic sensors are high-speed responsibility, non-effect of the magnetic, convenience of the product and high precision. The measurement theory for surface roughness of optical fiber sensor is one to one correspondence between the reflected light intensity based on the surface roughness of the object and the measurement value of previously known for surface roughness. The reflected light intensity was determined using the distance to the surface from the sensor probe and the limit reflection angle based on the surface roughness. Therefore, in this study, the sensor probe was produced for determining the value of surface roughness only using the limit reflection angle based on the surface roughness with the fixed distance from the surface. A prototype measurement system was composed of a transmitting part, a receiving part and a signal processing circuit. The materials of standard measurement which was used in this experiment were SM45C, STS303 and Al60. According to the results of this study, approximation surface roughness formulas which was deduced from the correlation of between the standard surface roughness and the sensing output were verified that they were effect against the surface roughness measurement value of the option sample. And handy optical fiber surface roughness measurement device which was produced by an order was verified that it was effect for measuring of the precision surface roughness.

Chromatic Adaptation Model for the Variations of the Chromaticity tinder the Surround Viewing Conditions (주위 시환경의 색도 변화에 따른 색 순응 모델)

  • Kim, Eun-Su;Jang, Soo-Wook;Lee, Sung-Hak;Sohng, Kyu-Ik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.19-28
    • /
    • 2005
  • Real surround viewing conditions in watching the color display devices such as TV and PC monitor are quite different from the standard viewing conditions. Human visual system is adapted chromatically under the different viewing conditions in luminance levels and chromaticity of illuminants. Accordingly, the reproduced colors of the same chromaticity will appear as quite different color. Therefore, it is necessary that the displayed colors are reproduced to be appeared as the original colors in the standard viewing conditions. In this paper, we propose a chromatic adaptation model for the variations of the surround illuminants' chromaticity under the same luminance conditions. In proposed chromatic adaptation model, we calculate each gain of L, M, and S as nonlinear functions according to the chromaticity of the surround illuminants. And the optimal coefficients are obtained from the corresponding colors data of the Breneman's experiments. The proposed chromatic adaptation model is compared with the conventional chromatic adaptation models. In the experimental results, the proposed model has very good performance in the whole range of luminance levels. We also experimentally confirmed that the reproduced corresponding colors using the proposed chromatic adaptation are appeared as the original colors when the real surround viewing conditions are different from the standard viewing conditions.

A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator (단순 라플라스 연산자를 사용한 새로운 고속 및 고성능 영상 화질 측정 척도)

  • Bae, Sung-Ho;Kim, Munchurl
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.157-168
    • /
    • 2016
  • In image processing and computer vision fields, mean squared error (MSE) has popularly been used as an objective metric in image quality optimization problems due to its desirable mathematical properties such as metricability, differentiability and convexity. However, as known that MSE is not highly correlated with perceived visual quality, much effort has been made to develop new image quality assessment (IQA) metrics having both the desirable mathematical properties aforementioned and high prediction performances for subjective visual quality scores. Although recent IQA metrics having the desirable mathematical properties have shown to give some promising results in prediction performance for visual quality scores, they also have high computation complexities. In order to alleviate this problem, we propose a new fast IQA metric using a simple Laplace operator. Since the Laplace operator used in our IQA metric can not only effectively mimic operations of receptive fields in retina for luminance stimulus but also be simply computed, our IQA metric can yield both very fast processing speed and high prediction performance. In order to verify the effectiveness of the proposed IQA metric, our method is compared to some state-of-the-art IQA metrics. The experimental results showed that the proposed IQA metric has the fastest running speed compared the IQA methods except MSE under comparison. Moreover, our IQA metric achieves the best prediction performance for subjective image quality scores among the state-of-the-art IQA metrics under test.

Controll over the Au@Ag Core-shell Nanoparticle 2D Patterns via Diblock Copolymer Inverse Micelle Templates and Investigation of the Surface Plasmon Based Optical Property (이중블록공중합체 역마이셀 주형을 이용한 Au@Ag 코어-쉘 나노입자 2차원 패턴 제어 및 표면 플라즈몬 기반 광학적 특성 연구)

  • Yoon, Min Ji;Kim, Jihyeon;Jang, Yoon Hee;Lee, Ji-Eun;Chung, Kyungwha;Quan, Li Na;Kim, Dong Ha
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.618-624
    • /
    • 2013
  • We demonstrated unique inter- and intra-plasmonic coupling effects in bimetallic Au@Ag core-shell NP arrays which are regularly or randomly arranged on self-assembled block copolymer (BCP) inverse micelle monolayers. Polyvinylpyrrolidone (PVP)-stabilized Au@Ag core-shell NP arrays in regular or disordered configuration were incorporated and assembled on reconstructed PS-b-P4VP inverse micelle templates through two types of processes. The intensively enhanced LSPR coupling properties of individual and assembled Au@Ag NPs were evaluated by UV-visible spectroscopy in terms of the type of ligand stabilizer, coupling between Au and Ag, thickness of Ag shell, and type of array configuration. Finally, Au@Ag core-shell NP arrays were employed as active substrates for surface enhanced Raman spectroscopy (SERS) and a significantly enhanced signal enhancement was observed in accordance with the coupling intensity of Au@Ag NPs patterns.

The fabrication and evaluation of CdS sensor for diagnostic x-ray detector application (진단 X선 검출기 적용을 위한 CdS 센서 제작 및 성능 평가)

  • Park, Ji-Koon;Lee, Mi-Hyun;Choi, Young-Zoon;Jung, Bong-Zae;Choi, Il-Hong;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Recently, various semiconductor compounds as radiation detection material have been researched for a diagnostic x-ray detector application. In this paper, we have fabricated the CdS detecton sensor that has good photosensitivity and high x-ray absorption efficiency among other semiconductor compounds, and evaluated the application feasibility by investigating the detection properties about energy range of diagnostic x-ray generator. We have fabricated the line voltage selector(LCV) for a signal acquisition and quantities of CdS sensor, and designed the voltage detection circuit and rectifying circuit. Also, we have used a relative relation algorithm according to x-ray exposure condition, and fabricated the interface board with DAC controller. Performance evaluation was investigated by data processing using ANOVA program from voltage profile characteristics according to resistive change obtained by a tube voltage, tube current, and exposure time that is a exposure condition of x-ray generator. From experimental results, an error rates were reduced according to increasing of a tube voltage and tube current, and a good properties of 6%(at 90 kVp) and 0.4%(at 320 mA) ere showed. and coefficient of determination was 0.98 with relative relation of 1:1. The error rate according to x-ray exposure time showed exponential reduction because of delayed response velocity of CdS material, and the error rate has 2.3% at 320 msec. Finally, the error rate according to x-ray dose is below 10%, and a high relative relation was showed with coefficient of determination of 0.9898.

A Problematic Bubble Detection Algorithm for Conformal Coated PCB Using Convolutional Neural Networks (합성곱 신경망을 이용한 컨포멀 코팅 PCB에 발생한 문제성 기포 검출 알고리즘)

  • Lee, Dong Hee;Cho, SungRyung;Jung, Kyeong-Hoon;Kang, Dong Wook
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.409-418
    • /
    • 2021
  • Conformal coating is a technology that protects PCB(Printed Circuit Board) and minimizes PCB failures. Since the defects in the coating are linked to failure of the PCB, the coating surface is examined for air bubbles to satisfy the successful conditions of the conformal coating. In this paper, we propose an algorithm for detecting problematic bubbles in high-risk groups by applying image signal processing. The algorithm consists of finding candidates for problematic bubbles and verifying candidates. Bubbles do not appear in visible light images, but can be visually distinguished from UV(Ultra Violet) light sources. In particular the center of the problematic bubble is dark in brightness and the border is high in brightness. In the paper, these brightness characteristics are called valley and mountain features, and the areas where both characteristics appear at the same time are candidates for problematic bubbles. However, it is necessary to verify candidates because there may be candidates who are not bubbles. In the candidate verification phase, we used convolutional neural network models, and ResNet performed best compared to other models. The algorithms presented in this paper showed the performance of precision 0.805, recall 0.763, and f1-score 0.767, and these results show sufficient potential for bubble test automation.