• Title/Summary/Keyword: 광 다이오드

Search Result 507, Processing Time 0.028 seconds

Active Front End Rectifier Control of DC Distribution System Using Neural Network (신경회로망을 적용한 직류배전시스템의 AFE 정류기 제어에 관한 연구)

  • Kim, Seongwan;Jeon, Hyeonmin;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1124-1128
    • /
    • 2021
  • As regulations of emissions from ships become more stringent, electric propulsion systems have been increasingly used to solve this problem in vessels ranging from large merchant ships to small and medium-sized ships. Methods for improving the efficiency of the electric propulsion system include the improvement of power sources; the use of a system linked to environmentally friendly power sources, such as batteries, fuel cells, and solar power; and the development of hardware and control methodology for rectifiers, power conversion devices, and propulsion motors. The method using a phase-shifting transformer with diodes has been widely used for rectification. Power semiconductor devices with grid connection to an environmentally friendly power source using DC distribution, a variable speed power source, and the application of small and medium-sized electric propulsion systems have been developed. Accordingly, the demand for active front-end (AFE) rectifiers is increasing. In this study, a method using a neural network rather than a conventional proportional-integral controller was proposed to control the AFE rectifier. Tested controller data were used to design a neural network controller trained through MATLAB/Simulink. The neural network controller was applied to a rectification system designed using PSIM software. The results indicated the effectiveness of improving the waveform and power factor DC output stage according to the load variation. The proposed system can be applied as a rectification system for small and medium-sized environmentally friendly ships.

Application and Performance Evaluation of Photodiode-Based Planck Thermometry (PDPT) in Laser-Based Packaging Processes (레이저 기반 패키징 공정에서 광 다이오드 기반 플랑크 온도 측정법(PDPT)의 적용 및 성능 평가)

  • Chanwoong Wi;Junwon Lee;Jaehyung Woo;Hakyung Jeong;Jihoon Jeong;Seunghwoi Han
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.63-68
    • /
    • 2024
  • With the increasing use of transparent displays and flexible devices, polymer substrates offering excellent flexibility and strength are in demand. Since polymers are sensitive to heat, precise temperature control during the process is necessary. The study proposes a temperature measurement system for the laser processing area within the polymer base, aiming to address the drawbacks of using these polymer bases in laser-based selective processing technology. It presents the possibility of optimizing the process conditions of the polymer substrate through local temperature change measurements in the laser processing area. We developed and implemented the PDPT (Photodiode-based Planck Thermometry) to measure temperature in the laser-processing area. PDPT is a non-destructive, contact-free system capable of real-time measurement of local temperature increases. We monitored the temperature fluctuations during the laser processing of the polymer substrate. The study shows that the proposed laser-based temperature measurement technology can measure real-time temperature during laser processing, facilitating optimal production conditions. Furthermore, we anticipate the application of this technology in various laser-based processes, including essential micro-laser processing and 3D printing.

Quantitative Analysis of Digital Radiography Pixel Values to absorbed Energy of Detector based on the X-Ray Energy Spectrum Model (X선 스펙트럼 모델을 이용한 DR 화소값과 디텍터 흡수에너지의 관계에 대한 정량적 분석)

  • Kim Do-Il;Kim Sung-Hyun;Ho Dong-Su;Choe Bo-young;Suh Tae-Suk;Lee Jae-Mun;Lee Hyoung-Koo
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.202-209
    • /
    • 2004
  • Flat panel based digital radiography (DR) systems have recently become useful and important in the field of diagnostic radiology. For DRs with amorphous silicon photosensors, CsI(TI) is normally used as the scintillator, which produces visible light corresponding to the absorbed radiation energy. The visible light photons are converted into electric signal in the amorphous silicon photodiodes which constitute a two dimensional array. In order to produce good quality images, detailed behaviors of DR detectors to radiation must be studied. The relationship between air exposure and the DR outputs has been investigated in many studies. But this relationship was investigated under the condition of the fixed tube voltage. In this study, we investigated the relationship between the DR outputs and X-ray in terms of the absorbed energy in the detector rather than the air exposure using SPEC-l8, an X-ray energy spectrum model. Measured exposure was compared with calculated exposure for obtaining the inherent filtration that is a important input variable of SPEC-l8. The absorbed energy in the detector was calculated using algorithm of calculating the absorbed energy in the material and pixel values of real images under various conditions was obtained. The characteristic curve was obtained using the relationship of two parameter and the results were verified using phantoms made of water and aluminum. The pixel values of the phantom image were estimated and compared with the characteristic curve under various conditions. It was found that the relationship between the DR outputs and the absorbed energy in the detector was almost linear. In a experiment using the phantoms, the estimated pixel values agreed with the characteristic curve, although the effect of scattered photons introduced some errors. However, effect of a scattered X-ray must be studied because it was not included in the calculation algorithm. The result of this study can provide useful information about a pre-processing of digital radiography.

  • PDF

Effects of Optical Characteristics on the Growth of Benthic Microalga, Nitzschia sp. and Its Growth Kinetics of Phosphate for Bioremediation (생물적 환경정화를 위한 부착미세조류 Nitzschia sp.의 생장에 미치는 광학적 특성과 그에 따른 인산염 성장 동력학)

  • Oh, Seok-Jin;Kang, In-Seok;Yoon, Yang-Ho;Yang, Han-Soeb;Park, Jong-Sick
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.4
    • /
    • pp.205-212
    • /
    • 2009
  • To suggest possible to bioremediation by benthic microalgae Nitzschia sp. isolated from the Jinhae Bay, the studies investigated the effects o flight quality and quantity on the growth of Nitzschia sp. and its growth kinetics for phosphate investigated. The Nitzschia sp. was cultured under blue (450 nm), yellow (590 nm) and red wavelength (650 nm) using light emitting diode (LED) and mixed wavelengths using a fluorescent lamp. The maximum specific growth rate showed the Nitzschia sp. under blue wavelength, although photoinhibition was observed above $100\;{\mu}mol\;m^{-2}\;s^{-1}$. Mixed wavelengths were also observed by decreasing the maximum cell density from high irradiances (>$100\;{\mu}mol$ photons $m^{-2}\;s^{-1}$). The compensation photon flux density ($I_0$) calculated from the mixed wavelengths equated to a depth of 4-10 m in Jinhae Bay, and was lower in the summer season than the depth due to suspended matter (ca. 4 m). Thus, the suitable depth for maximum growth of Nitzschia sp. might be extremely limited. In the growth kinetics for phosphate, half-saturation constant ($K_s$) was similar among different wavelengths, although the maximum growth rate was varied among different wavelengths. Because the $K_s$ was high than that of the phytoplankton, Nitzschia sp. might have adapted to the high nutrient concentrations, and have effective nutrient storage in the cell quota. Thus, Nitzschia sp. may be a useful species for bioremediation of the benthic layer in polluted inner bays by means of irradiated specific wavelength as blue.

Studies on LED Wavelength to Enhance Growth and Bio-active Compounds of Carrots (당근의 성장과 생리활성물질 함량을 증진시키는 LED 파장에 관한 연구)

  • Kang, Suna;Kim, Min-Jung;Kim, Bong Soo;Park, Sunmin
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.131-137
    • /
    • 2015
  • Commercial greenhouse plant factories are highly efficient for controlling external factors such as floods, drought, insects, air pollution etc. However, they require substantial startup & maintenance investments and experimental research to optimize production. These facilities are especially useful for urban farming where high efficiency in small spaces is required. In this study, we investigated whether light emitting diode (LED) lights with mixed dominant wavelengths (650 nm : 550 nm : 445 nm=8:1:1, 650 nm : 445 nm=6:4) can increase the growth rate and bio-active compound content of carrots in comparison to that of fluorescent light (FL). LED with mixed wavelength (650 nm : 550 nm : 445 nm=8:1:1) increased the total weight and root circumference of carrots compared to FL. However, ${\beta}$-carotene contents were not significant in LED (650 nm : 550 nm : 445 nm=8:1:1). However, LED (650 nm : 445 nm=6:4) increased the ${\beta}$-carotene (FL: 7.27, LED: 10.48 mg/g ${\beta}$-carotene dried weight). These results suggested that using LED light at the ideal wavelength, at the antithesis color of the plant, might enhance plant growth and bio-active compound contents.

Optical Characteristic on the Growth of Centric Diatom, Skeletonema costatum (Grev.) Cleve Isolated from Jinhae Bay in Korea (진해만에서 분리한 중심목 규조류 Skeletonema costatum(Grev.) Cleve의 성장에 미치는 광학적 특성)

  • Oh, Seok-Jin;Kang, In-Seok;Yoon, Yang-Ho;Yang, Han-Soeb
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • The effects of light quality and irradiance on the growth of centric diatom, Skeletonema costatum (Jinhae Bay strain) were investigated in the laboratory. At 20$^{\circ}C$ and 30 psu, the irradiance-growth curve showed the maximum growth rate of 1.17 day$^{-1}$ with half-saturation photon flux density (PFD) (K$_s$) of 92.4 $\mu$mol photons $m^{-2}s^{-1}$, $\mu$=1.17 (I-5.28)/(I+81.8), (r=0.98), and a compensation PFD (I$_0$) was 5.28 $\mu$mol photons $m^{-2}s^{-1}$. The 10 equated to a depth of 3$\sim$5 m from March to May, 11 m in June and 4 m from July to September in Jinhae Bay. These responses suggested that irradiance at the depth near the surface layer in Jinhae Bay would provide favorable conditions for S. costatum. To assess the effects of light (i.e. wavelengths) on the growth, nine wave-lengths were used ranging from near ultraviolet to near-infrared supplied by light emitting diode. At an irradiance level of 25 $\mu$mol photons $m^{-2}s^{-1}$, S. costatum grew under wavelengths of 405, 470, 505, 525, 568 and 644 nm, but did not grow at 590 and 623 nm; whereas S. costatum grew at all wavelengths at 100 $\mu$mol photons $m^{-2}s^{-1}$. This implies that S. costatum is likely to grow well in enclosed water bodies where suspended particles absorbs most of the blue wavelengths, and dominated by yellow-orange wavelengths.

Applicability of Artificial Light Source and Newly Developed Growing Medium for Lettuce Cultivation in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 상추재배를 위한 인공광원과 신개발 배지의 적용)

  • Lee, Hye Ri;Kim, Hye Min;Kim, Hyeon Min;Park, Sang Hyun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.134-142
    • /
    • 2019
  • This study was conducted to evaluate the growth characteristics of lettuce (Lactuca sativa L.) as affected by artificial light sources and different growing media in a closed-type plant production system (CPPS). The lettuce seeds were sown in the 128-cell plug tray filled with 5 different growing media such as urethane sponge (US), rock-wool (RW), Q-plug (QP), TP-S2 (TP) and PU-7B (PU). The germination rate of lettuce seeds was examined during 12 days after sowing. On the 13 days after sowing, the lettuce seedlings were transplanted in a CPPS with temperature $25{\pm}1^{\circ}C$ and nutrient solution (EC $2.0dS{\cdot}m^{-1}$, pH 6.5) using recirculating deep floating technique system. The light sources were set with FL (fluorescent lamps) and combined RB LEDs (red : blue = 7 : 3) with $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and a photoperiod of 14/10 hours (light/dark). The initial germination rate of lettuce was the highest in TP. The final germination and mean daily germination were the significantly highest in RW, QP and TP. The plant height, leaf length, leaf width, leaf area, and fresh and dry weights of shoot were the greatest in QP irradiated with RB LED. The number of leaves, fresh and dry weights of root and SPAD were the greatest in QP and TP irradiated with RB LED. The root length was the longest in TP irradiated with RB LED. Therefore, these results indicate that RB LED was effective for the growth of lettuce and it was also found that the QP and TP were effective for the germination and growth of lettuce in a CPPS. In addition, we confirmed the applicability of the newly developed growing medium TP for the lettuce production in a CPPS.