• Title/Summary/Keyword: 광해 복원

Search Result 13, Processing Time 0.062 seconds

Recycling Studies for Swine Manure Slurry Using Multi Process of Aerobic Digestion (MPAD) (다중 호기 소화공정을 이용한 양돈분뇨 슬러리의 자원화 연구)

  • Kim, Soo-Ryang;Yoon, Seong-Ho;Lee, Jun-Hee;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.155-160
    • /
    • 2009
  • This study was carried out to investigate the feasibility of Multi Process of Aerobic Digestion (MPAD) for recycling of swine manure slurry as fertilizer. MPAD consisted of three kinds of difference process which are thermophilic aerobic oxidation (TAO) system, lime solidification system, and reverse osmosis (R/O) membrane system. TAO system was studied well previously for decade. The chemical composition of the lime-treated solid fertilizer was as like that organic matter 17.4%, moisture 34.1%, N 0.9%, P 1.7%, K 0.3%, Ca 12.7%, and which was expected to be useful as acid soil amendment material. The concentrated liquid material produced by R/O membrane system was also expected as a good fertilizer for crops production and soil fertility improvement.

  • PDF

Health Risk Assessments using GIS Method for the Abandoned Asbestos Mines (GIS 기법을 이용한 폐석면 광산의 위해성 평가)

  • Choi, Jin-Beom;Son, Ill;Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.43-53
    • /
    • 2011
  • Health risk assessments for the abandoned asbestos mine were usually performed with activity-based sampling (ABS) method, which was not a effective tool for indexing health risk on an exact small area of mine. A newly proposed potential index of health risk (PIHR) was applied with proper spatial determination of geographical information system (GIS) to assess quantitatively health risks. A new trial was applied to a certain abandoned mine in Boryong as follows: A high grade area of PIHR was estimated 7.8% of the whole area of the mine (about 27.3 ha). Based on US EPA IRIS (integrated risk information system) model considering lifetime excess cancer risk (LECR), the health risk assessment indicated that the high grade area increased from 3.0 ha through 12.9 ha to 19.5 ha with an increase of asbestos contents in soil from 0.36% (1E-04 level) through 0.1% (3E-05 level) to 0.04% (1E-05 level). These results can be effectively applied to determine reclamation area of the abandoned asbestos mine.

An Investigation of Treatment Effects of Limestone and Steel Refining Slag for Stabilization of Arsenic and Heavy Metal in the Farmland Soils nearby Abandoned Metal Mine (폐금속 광산 주변 비소 및 중금속 오염농경지의 안정화 처리를 위한 석회석과 제강슬래그의 처리효과 검토)

  • Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun;Kim, Ha-Jin;Lim, Young-Cheol;Yi, Ji-Min;Yu, Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.734-744
    • /
    • 2011
  • A soil stabilization method is an effective and practical remediation alternative for arsenic (As) and heavy metal contaminated farmland soils nearby abandoned metal mine in Korea. This method is a technique whereby amendments are incorporated and mixed with a contaminated soil. Toxic metal bind to the amendments, which reduce their mobility in soil, so the successful stabilization of multi-element contaminated soil depends on the combination of critical elements in the soil and the type of amendments. The objective of this study is to investigate the treatment effects and applicability of limestone (LS) and steel refining slag (SRS) as the amendment for farmland soil contaminated with As and heavy metals, and a lab-column test was conducted for achieving this purpose. The result showed that soil treated with LS and SRS maintained pH buffer capacity and, as a result, the heavy metal leaching concentration was quite low below the water quality standard compared to untreated soil which leachate exceeding the water quality standard was observed, however, the arsenic concentration rather increased with increasing mixture ratio of SRS. This was believed to be related to phosphorus (P) contained in SRS, and dominancy in the competitive adsorption relation between As and P binding strongly to iron might be different according to soil characteristic. We suggested that LS is a effective amendment for reducing heavy metals in soil, and SRS should be used after investigating its applicability based on the adsorption selectivity of arsenic and phosphorus in selected soil.