비정질 실리콘 박막 태양전지연구에 일반적으로 사용되고 있는 ASA (Advanced Semicon ductor Analysis) simulation을 이용하여 TCO/p에 삽입될 버퍼층의 최적 구조를 설계해보았다. 기본적인 p,i,n층 단일막 data 값을 고정시켜 버퍼층의 광학적 밴드갭을 1.75~1.95eV, 활성화 에너지를 0.3~0.4eV, 두께를 5~15nm로 가변해 보았다. 첫 번째로 동일한 활성화 에너지를 갖는 버퍼층의 광학적 밴드갭을 증가 시켰을 경우 built-in potential이 증가하였으며 이는 개방전압의 증가로 이어졌다. 두 번째로 활성화 에너지가 작은 경우 큰 경우에 비하여 Conduction-band와 Fermi-level의 차이가 증가 하게 되어 활성화 에너지가 큰 경우에 비해 높은 built-in potential을 얻을 수 있었다. 또한 버퍼층과 p층의 접합부분에서의 barrier가 활성화 에너지의 차이를 줄일수록 감소 함 을 알 수 있었다. 장벽의 감소로 정공의 흐름을 방해하는 요소가 줄어들었고 효율도 증가하였다. 마지막으로 버퍼층 두께가 두꺼워 질수록 박막 내에서 빛 흡수가 많아지게 되어 광 흡수층으로 가야할 빛의 양이 줄어들게 되어 단락전류값이 감소하는 것을 알 수 있었다. Simulation결과 버퍼층의 광학적 밴드갭이 1.95eV로 크고 활성화 에너지가 0.3eV이하로 p층에 비하여 낮으며 두께가 5nm로 얇을수록 좋다는 결과를 알 수 있었다.
The Journal of the Korea institute of electronic communication sciences
/
v.13
no.6
/
pp.1213-1222
/
2018
The energy band gaps and the bowing parameters of zincblende $GaAs_{1-x}N_x$ on the variation of temperature and composition are determined by using an empirical pseudo-potential method with another virtual crystal approximation, which includes the disorder effect. The bowing parameter is calculated as 15eV and the energy band gaps are decreasing rapidly in $GaAs_{1-x}N_x$ ($0{\leq}x{\leq}0.05$, 300K). A refractive index n and a function of high-frequency dielectric constant ${\varepsilon}$ are calculated by the results of energy band gaps and the calculation results of energy band gaps are consistent with experimental values.
The Journal of the Korea institute of electronic communication sciences
/
v.14
no.5
/
pp.877-886
/
2019
The energy band gaps and optical constants of zincblende $In_yGa_{1-y}As_{1-x}N_x$ on the variation of temperature and composition are determined by using band anticrossing method. The energy band gaps are decreasing continuously in $In_yGa_{1-y}As_{1-x}N_x$ ($0{\leq}x{\leq}0.05$, $0{\leq}y{\leq}1.0$, 300K) and the bowing parameter is calculated as 0.522eV. The calculation results of energy band gaps are consistent with those of other studies. A refractive index n and a high-frequency dielectric constant ${\varepsilon}$ are calculated by a proposed modeling equation using the results of energy band gaps.
Park, Hyeon-U;Kim, Bu-Gyeong;Park, Jin-Seong;Jeong, Gwon-Beom
Proceedings of the Korean Vacuum Society Conference
/
2012.08a
/
pp.165-165
/
2012
비정질의 Tantalum-indium-zinc oxide (TIZO) 박막 트랜지스터는 RF-sputtering 방법으로 증착되었으며 소결된 단일 타겟을 사용하였다. 증착당시 반응 가스는 알곤과 산소를 95 : 5로 섞어 반응성 스퍼터링을 진행하였으며, 1 mtorr에서 5 mtorr까지 다양한 공정압력에서 증착한 이 후 Furnace system을 통하여 $350^{\circ}C$의 온도로 1시간 동안 후열처리 공정을 진행하였다. 비정질 TIZO 박막을 활성 층으로 사용하여 제작한 박막 트랜지스터는 공정압력이 낮아짐에 따라 높은 이동도와 낮은 subthrehsold gate swing 보였다. 이러한 현상의 원인을 규명하고자 물리적, 전기적, 광학적 분석을 통하여 공정압력의 변화가 박막 트랜지스터 구동에 미치는 영향을 해석하였다. 우선 공정압력에 따른 TIZO 박막의 Ta, In, Zn, O 각각의 조성을 분석하기 위하여 Rutherford back scattering (RBS) 분석을 실시하였다. 또한 X-선 회절(X-ray diffraction)분석을 통해 열처리된 TIZO 박막은 공정압력에 따라 물리적 구조의 변화를 일으키지 않으며 모든 박막은 비정질상을 보이는 것을 확인하였다. 3.3eV의 광학적 밴드 갭은 기존에 보고되었던 비정질 산화물 반도체(InGaZnO, HfInZnO 등)와도 유사한 밴드갭을 가지고 있음을 확인하였다. 또한, spectroscopic ellipsometry (SE)분석을 통하여 전도대 이하 밴드 갭 내에 존재하는 결함상태 및 전도대에서 결함상태까지의 에너지 준위 그리고 공정압력에 따라 결함의 양과 발생되는 에너지 준위가 변화하는 현상을 관측하였다. 박막을 제조 할 때의 공정압력은 박막 내의 결함의 양 및 발생되는 에너지 준위의 변화를 야기하고 변화된 결함의 양과 발생된 에너지 준위에 따라 박막트랜지스터의 전기적 특성을 변화시킨다는 결과를 도출하였다.
Proceedings of the Korean Vacuum Society Conference
/
2012.08a
/
pp.406-406
/
2012
ZnO는 큰 여기자 결합 에너지, 낮은 유전 상수, 높은 화학적 안정도를 가지고 있기 때문에 전자소자 및 광소자로 많이 응용되고 있다. 여러 가지 불순물을 주입하여 ZnO의 전기적 및 광학적 성질을 향상시키기 위한 연구가 진행되고 있다. 여러 가지 불순물 중에 Zn와 물리적 및 화학적 성질이 유사한 Cu를 도핑하여 전기화학적성장(electrochemical deposition) 방법으로 ITO가 코팅된 유리 기판 위에 ZnO 박막을 성장하였다. Cu를 도핑하여 ZnO박막을 성장한 결과 구조적으로 ZnO 박막이 나노로드 형태에서 부분적으로 나노세선 또는 나노로드 형태로 변화함을 확인하였다. 광류미네센스 측정 결과는 벌크 ZnO 박막과 비교하여 Cu를 도핑함으로써 ZnO 나노세선이 3.37 eV의 에너지를 가지는 파장의 크기가 줄어들었고 여러 방향으로 ZnO 나노세선이 형성됨을 알 수 있었다. Cu를 도핑함으로써 ZnO 나노세선의 구조적 변화는 크기 않으나 에너지 밴드갭을 변화할 수 있음을 알 수 있었다. ZnO 나노세선의 광학적 성질을 Cu를 도핑하여 변화할 수 있음을 관측하였으며 불순물을 도핑하여 밴드갭을 변화하여 전자소자 및 광소자를 제작하는 기초지식으로 사용할 수 있다.
Park, Seung-Man;Lee, Sun-Hwa;Kong, Dae-Young;Lee, Wan-Back;Jung, Wu-Wan;Yi, Jun-Sin
한국신재생에너지학회:학술대회논문집
/
2009.11a
/
pp.386-386
/
2009
TCO/p/i/n 구조의 비정질 실리콘 박막 태양전지의 제작에 있어서 TCO계면과 p층사이의 이종접합에서의 큰 밴드갭 차이는 p층으로부터의 정공 재결합을 통하여 효율 저하의 원인이 된다. 이러한 재결합은 넓은 밴드갭을 가진 물질을 완충층으로 삽입함으로써 개선되어 질 수 있다. 본 논문에서는 비정질 실리콘 보다 넓은 광학적 밴드갭을 가지는 a-SiOx 박막을 완충층으로 사용하여 TCO/P 계면에서의 재결합 감소에 대한 시뮬레이션을 수행하였다. a-SiOX 박막 내에 포함된 산소의 양에 따라 밴드갭을 조절하여 1.8eV~2.0eV 사이의 완충층을 삽입하여 박막태양전지의 개방전압, 단락전류, 효율 등에 끼치는 영향을 ASA 시뮬레이션을 통하여 알아보았다.
Proceedings of the Korean Institute of Surface Engineering Conference
/
2007.11a
/
pp.95-96
/
2007
DC magnetron sputtering 법으로 다양한 $Ga_2O_3$함량비( $2.27{\sim}$ 10.81 wt%)를 가진 고밀도 GZO 소결타겟을 사용하여 GZO박막을 증착한 후 도핑농도에 따른 광학적 특성과 전기적 특성을 조사하였다. GZO($Ga_2O_3$: 6.65 wt%)타겟을 사용하여 기판온도 $300^{\circ}C$에서 증착한 GZO박막은 상대적으로 낮은 비저항($5.1{\times}10^{-4}$${\Omega}cm$)과 85% 이상의 높은 투과율을 보였다. 또한 타겟의 $Ga_2O_3$함량이 6.65 wt%일때 광학적 밴드갭 에너지는 3.61 eV로 비교적 큰 흡수계수의 변화를 보였으며 그 이상의 $Ga_2O_3$농도에서는 밴드갭 에너지가 감소하는 경향을 보였다.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2007.06a
/
pp.178-178
/
2007
II-VI의 넓은 밴드갭 (3.37 eV)을 가지는 ZnO는 solar cells, transparent conductive electrodes, ultraviolet light emitters, and chemical sensors 등에 응용되고 있다. 특히 고효율 ZnO계 발광 소자 구현을 위하여 MgO (7.7eV), CdO (2.0eV) 등의 고용을 통한 밴드갭을 엔지니어링 하며, 단파장 영역의 광원을 확보하기 위하여 MgO 첨가를 통한 밴드갭 에너지를 증가시키는 방향으로의 연구가 활발하다. 그러나 ZnO의 wurtzite 구조와 MgO의 rocksalt 구조의 상이한 결정구조로 인하여 Mg의 고용한계는 4 at. %, 4.1 eV 알려져 있다. 본 실험에서는 p-type Si (100), c-sapphire (0002)과 GaN 기판 위에 MgO (99.999 %)와 ZnO (99.999 %) 두가지 타겟을 사용하여 RF co-스퍼터링법으로 ZnMgO 박막을 증착 하였다. 이때 ZnO 타겟의 power 밀도는 고정 시키고 MgO 타겟의 power 밀도를 변화 시키며 Mg의 함량을 조절하여 그에 따른 광학적 구조적 특성의 변화를 연구 하였다. 성장된 ZnMgO 박막은 MgO 타겟의 power 밀도가 증가할 때 Mg의 함량이 10 at. %까지 증가 하며, 그에 따른 표면의 거칠기 및 입계 크기가 감소하며, 박막의 성장속도 또한 감소함을 SEM과 AFM을 통하여 알 수 있었다. XRD를 동하여 ZnMgO 박막의 (0002) peak의 위치는 $34.50^{\circ}{\sim}34.7^{\circ}$로 오른쪽으로 이동하며, c-축으로 성장하였음을 알 수 있다. PL과 UV룰 동하여, Mg의 함량이 증가 할수록 박막의 밴드갭 에너지는 3.2 eV에서 4.1 eV 로 증가하였다.
Kim, Jong-Hyeon;Kim, Seong-Hyeon;Kim, Seon-Min;Lee, Cheol-Seung;Lee, Gyeong-Il;Jeong, Dae-Yong;Jo, Jin-U
Proceedings of the Korean Vacuum Society Conference
/
2011.08a
/
pp.354-354
/
2011
ZnO 나노와이어는 밴드 갭이 3.37 ev로 큰 밴드 갭을 갖는 물질이며 엑시톤 결합에너지가 60 meV로 GaN(25 meV)같은 다른 반도체보다 매우 크다. 또한 밴드갭 에너지가 큰 GaN, SiC와 같은 반도체에 비해서 화학적, 열적 안정성이 크며 낮은 온도에서 성장이 가능하다는 장점이 있다. 본 연구에서는 pre-heating process를 이용하여 1차원 구조인 ZnO nanowire를 수열합성법으로 합성하였다. 실험방법으로는 E2K glass 기판위에 AZO40 nm를 증착후, 시드층으로 이용하여 ZnO nanowire를 성장하였다. precusor 전구체에는 ZN(NO3)2 ${\cdot}$ 6H2O와 Capping agent으로의 역할을 위해 PEI와 OH-source 공급을 위한 Ammonium chloride를 첨가하여 합성하였고, 그에 따른 ZnO nanowire의 morphology 및 aspect ratio를 조절하고자 하였다. 마지막으로 ZnO 나노와이어의 구조적, 광학적 특성 평가를 하기위해 XRD, FE-SEM, PL 등을 이용하여 측정 하였고, 향후 나노발전기, 태양전지 등 여러 광학기기 등에 전극재료로서 응용 가능성에 대해 알아보고자 하였다.
FeCl$_{3}$등 천이금속 halides를 촉매로 이용하여 poly(3-hexylthiophene) 등의 가용성 polythiophene 유도체를 합성하였다. casting에 의해 작성한 필림은 전해중합 법에 의한 polythiophene 필림과 같은 특성을 나타낸다. Poly(3-hexylthiophene)의 용액 상태의 에너지 밴드 갭은 2.42(eV)이며 이것은 필림상태 보다 고분자 쇄간의 상호작용이 약하므로 밴드 갭이 더 크다. 또한 I$_{2}$를 도우프하면 고차 구조가 달라지므로 poly(3-hexylthiophene)은 polythiophene 보다 도핑속도가 더욱 빠르다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.