• Title/Summary/Keyword: 광학식 프로브

Search Result 8, Processing Time 0.023 seconds

Optical Probe of white Light Interferometry for Precision Coordinate Metrology (정밀 삼차원 측정을 위한 백색광 간섭 광학 프로브 개발)

  • 김승우;진종한;강민구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.195-198
    • /
    • 2002
  • Demand for high precision measurement of large area is increasing in many industrial fields. White-light Scanning Interferometer(WSI) is a well-known method for 3D profile measurement. However WSI has some limitations in a measurement range because of the sensing mechanism. Therefore, in this paper we use a heterodyne laser interferometer to get over the limitations of a short measurement range in WSI, We suggest a new WSI system combined with heterodyne laser interferometer. This system is aimed at eliminating Abbe error with measuring the focus point directly. With the use of triggering functionality of WSI, we can use this system as a probe of a precision stage such as a probe of CMM. The suggested system gives a repeatability of 87 nm in the absolute distance measurement test under the laboratory environment.

  • PDF

A Noncontact Optical Sensor Development for Measuring the Thickness of Transparent Plates (투명판의 두께 측정용 비접촉식 광센서 개발)

  • Ryu, Young-Kee;Oh, Choonsuk;Lee, Seoyoung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.1 s.307
    • /
    • pp.1-6
    • /
    • 2006
  • The noncontact optical sensor using the hologram laser and automatic power controller is developed to measure a thickness of transparent objects and achieve excellent performance. Due to the contact between the tip of the sensor and the surface of objects, the tip is abraded. In addition the casting glass under high temperature results in extending the size of sensor body. The accuracy of the sensor is degraded due to these reasons. In this paper, to overcome these problems, we proposed a low cost non-contact optical sensor that is composed of a hologram laser unit used for optical pickup of CD player and a plastic lens. Therefore the problems caused by the contact sensor are solved by using the noncontact sensor. The noncontact sensor has to move toward the objects and obtain the focus error signal to measure a position of transparent objects. While the internal temperature of the sensor is controlled under ${\pm}0.1^{\circ}$, many trials shows ${\pm}2{\mu}m$ measurement error as excellent performance.

Experimental Performance Evaluation of Optical Receiving Probe (광학식 수광 프로브의 실험적 성능평가)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.3
    • /
    • pp.265-271
    • /
    • 2004
  • A light collecting probe named Multi-colored Integrated Receiving Optics (MICRO) is experimentally examined to verify its performance. For these purposes, the time-series signals of MICRO probe is compared with those of electro-static probe and light-guided probe by monitoring, for example. such as OH radical chemiluminescence. CH radical band and droplet Mie scattering In addition, the experiment was conducted by using laminar premixed Bunsen flame, turbulent premixed Bunsen flame and premixed spray flame, respectively. It was confirmed that the performance of MICRO probe was very useful and convenient to obtain the chemiluminescence signals from local regions in turbulent premixed Bunsen flame and premixed spray flame.

  • PDF

Application of Optical Receiving Probe in Combustion Field (연소장에서의 광학식 수광프로브의 적용)

  • Yang, Young-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.335-341
    • /
    • 2004
  • A light collecting probe named Multi-colored Integrated Receiving Optics (MICRO) is experimentally examined to verify its performance. For these purposes, the time-series signals of MICRO probe is compared with those of electrostatic probe and light-guided probe by monitoring, for example, such as OH radical chemiluminescence, CH radical band and droplet Mie scattering. In addition, the experiment was conducted by using laminar premixed Bunsen flame, turbulent premixed Bunsen flame and premixed spray flame, respectively. It was confirmed that the performance of MICRO probe was very useful and convenient to obtain the chemiluminescence signals from local regions in turbulent premixed Bunsen flame and premixed spray flame.

레이져 응용 계측에 관하여

  • 신현동
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.14-19
    • /
    • 1984
  • 종래에 많이 사용된 각양의 계측 방법을 일일이 설명하는 것은 본 해설의 목적이 아니기 때문에 개략적으로 분류하여 설명하면 다음과 같다. 1) 시간 평균유속은 주로 프로브(probe)를 경유하여 동압과 정압의 측정에 의하여 수행되어 왔다. 연소반응이 있으면 밀도의 변화가 있게 되는데 밀도는 후술하는 농도의 계측과 온도의 계측에 의하여 정해져 동압과 정압으로부터 유속으로 변환된다. 시간분해능이 높은 비접촉식(직접 프 로브를 측정부에 삽입하지 않는 방법) 유속측정이 가능한 방법으로는 레이저 도플러 유속계 (Laser Doppler Velocimetry, 이하 LDV로 표현)를 들 수 있다. LDV는 압력측정에 의한 유속 산출법에서와 같은 온도 및 농도 등의 부수적인 계측이 필요없이, 직접 유속을 검출할 수 있으며 또한 검정이 필요없는 절대유속 측정이 가능하며 현재 연소반응이 있는 흐름에 대한 대부분의 연구에 적용되고 있는 실정이다. 2) 시간평균 화학종 농도측정에 가장 많이 쓰이는 방법은, 연소가스를 채취하여 가스 크로마토 그라프(Gas Chromatograph)로 분석하는 것을 들 수 있다. 한편, 시간 분해능이 높은 화학종 농 도의 계측은 레이저를 사용하여 각 화학종의 발광, 산란 및 흡수성을 이용, 측정한다. 3) 온도측정은 대부분 열전대를 사용하고 있다. 그러나 이 방법은 직접 프로브를 삽입해야 하므로 사용한계의 범위가 지극히 좁으며, 연소반응이 일어나므로 프로브 자체의 촉매반응 및 복사 열전달에 의한 보정 등이 사용상 큰 문제로 제기된다. 그러나 최근 레이저 이용기술의 발달로 (2)항에서의 농도 계측과 같이 반응기체의 온도 및 성분의 동시측정이 가능한 방법도 점차 현 실화 되어가고 있다. 그 대표적인 예로 CARS법(Coherent Anti-Stokes Raman Spectroscopy)을 들 수 있다. 이상으로부터 연소반응이 일어나는 흐름에서의 각종 계측에서는, 비접촉 측정의 가능성과 시간 공간 분해능의 특징으로 미루어 앞으로는 레이저를 이용한 계측 방법이 그 주류를 이룰 것으로 사료된다. 우선 본 해설은 기체의 온도 및 농도의 광학적 측정방법중 Raman산란광 검출법에 대하여 실제로 측정하는 입장에서 간단히 소개한다.

  • PDF

An implementation of 2D/3D Complex Optical System and its Algorithm for High Speed, Precision Solder Paste Vision Inspection (솔더 페이스트의 고속, 고정밀 검사를 위한 이차원/삼차원 복합 광학계 및 알고리즘 구현)

  • 조상현;최흥문
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.139-146
    • /
    • 2004
  • A 2D/3D complex optical system and its vision inspection algerian is proposed and implemented as a single probe system for high speed, precise vision inspection of the solder pastes. One pass un length labeling algorithm is proposed instead of the conventional two pass labeling algorithm for fast extraction of the 2D shape of the solder paste image from the recent line-scan camera as well as the conventional area-scan camera, and the optical probe path generation is also proposed for the efficient 2D/3D inspection. The Moire interferometry-based phase shift algerian and its optical system implementation is introduced, instead of the conventional laser slit-beam method, for the high precision 3D vision inspection. All of the time-critical algorithms are MMX SIMD parallel-coded for further speedup. The proposed system is implemented for simultaneous 2D/3D inspection of 10mm${\times}$10mm FOV with resolutions of 10 ${\mu}{\textrm}{m}$ for both x, y axis and 1 ${\mu}{\textrm}{m}$ for z axis. Experiments conducted on several nBs show that the 2D/3D inspection of an FOV, excluding an image capturing, results in high speed of about 0.011sec/0.01sec, respectively, after image capturing, with $\pm$1${\mu}{\textrm}{m}$ height accuracy.

20 GHz Pulse Sampling Oscilloscope Based on Electro-Optic Technique (광-전자파 기반 20 GHz급 펄스 샘플링 오실로스코프)

  • Lee, Dong-Joon;Kang, No-Weon;Lee, Joo-Gwang;Kang, Tae-Weon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.927-933
    • /
    • 2011
  • This paper presents an optical sampling technique which can be used to overcome the limited bandwidth of a commercial electronic sampling oscilloscope for pulsed signal measurement. Employing an ultrafast laser with 0.1 ps pulse duration, 20 GHz electromagnetic pulses were generated through a fast photodiode. These pulses were transmitted through a microstrip line and sampled with an optically triggered electro-optic system. Two sampled 20 GHz pulses - measured independently over the transmission line with a non-contacting electro-optic method and conventional electronic one through a coaxial cable - were compared.

A development of the Automatic Measuring System for internal pressure of the artillery (화포 내부 압력의 자동 측정시스템 개발)

  • Lee, Jeong-Ho;Kim, Dong-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.766-773
    • /
    • 2021
  • Chemicals, such as ammunition, are disposable items that cannot be reused because of their operational characteristics. The reliability of the test process and test results are important factors in evaluating the performance of guns and ammunition. The pressure after firing is a crucial value in an acceptance test of guns and ammunition performance; hence, accurate measurements are required. The pressure in the artillery is measured using the copper crusher gauge. The compression amount of copper is converted into a pressure by either a length-pressure conversion table or conversion formula. Therefore, the exact measurement of the squeeze of the copper crusher is related directly to the correct estimate of the pressure. Currently, the pressure is measured manually by the operator, which always includes some human error. In this study, the cause of the measurement error was analyzed, and the automatic measuring system for copper crusher deformation was developed to minimize the error elements. A copper crusher could be measured using the probe sensor and CCD camera, and the Jig for stable positioning was also designed. A designated SW was also developed for the system operating and measurement-analysis. This measuring system through this study may be used for an ammunition stockpile reliability test and gun/ammunition acceptance test.