• 제목/요약/키워드: 광학(optics)

검색결과 3,263건 처리시간 0.021초

A Ghost-Imaging System Based on a Microfluidic Chip

  • Wang, Kaimin;Han, Xiaoxuan;Ye, Hualong;Wang, Zhaorui;Zhang, Leihong;Hu, Jiafeng;Xu, Meiyong;Xin, Xiangjun;Zhang, Dawei
    • Current Optics and Photonics
    • /
    • 제5권2호
    • /
    • pp.147-154
    • /
    • 2021
  • Microfluidic chip technology is a research focus in biology, chemistry, and medicine, for example. However, microfluidic chips are rarely applied in imaging, especially in ghost imaging. Thus in this work we propose a ghost-imaging system, in which we deploy a novel microfluidic chip modulator (MCM) constructed of double-layer zigzag micro pipelines. While in traditional situations a spatial light modulator (SLM) and supporting computers are required, we can get rid of active modulation devices and computers with this proposed scheme. The corresponding simulation analysis verifies good feasibility of the scheme, which can ensure the quality of data transmission and achieve convenient, fast ghost imaging passively.

Optically Managing Thermal Energy in High-power Yb-doped Fiber Lasers and Amplifiers: A Brief Review

  • Yu, Nanjie;Ballato, John;Digonnet, Michel J.F.;Dragic, Peter D.
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.521-549
    • /
    • 2022
  • Fiber lasers have made remarkable progress over the past three decades, and they now serve far-reaching applications and have even become indispensable in many technology sectors. As there is an insatiable appetite for improved performance, whether relating to enhanced spatio-temporal stability, spectral and noise characteristics, or ever-higher power and brightness, thermal management in these systems becomes increasingly critical. Active convective cooling, such as through flowing water, while highly effective, has its own set of drawbacks and limitations. To overcome them, other synergistic approaches are being adopted that mitigate the sources of heating at their roots, including the quantum defect, concentration quenching, and impurity absorption. Here, these optical methods for thermal management are briefly reviewed and discussed. Their main philosophy is to carefully select both the lasing and pumping wavelengths to moderate, and sometimes reverse, the amount of heat that is generated inside the laser gain medium. First, the sources of heating in fiber lasers are discussed and placed in the context of modern fiber fabrication methods. Next, common methods to measure the temperature of active fibers during laser operation are outlined. Approaches to reduce the quantum defect, including tandem-pumped and short-wavelength lasers, are then reviewed. Finally, newer approaches that annihilate phonons and actually cool the fiber laser below ambient, including radiation-balanced and excitation-balanced fiber lasers, are examined. These solutions, and others yet undetermined, especially the latter, may prove to be a driving force behind a next generation of ultra-high-power and/or ultra-stable laser systems.

적도 태평양 산호초 서식지의 해수 반사도 특성 (Ocean Optical Properties of Equatorial Pacific Reef Habitat)

  • 문정언;최종국
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.615-625
    • /
    • 2021
  • 태평양 적도 부근에 위치한 팔라우섬과 통가섬 주변 연안해역은 산호초와 맹그로브 및 해초지로 구성된 해역이다. 특히, 산호초 서식지의 표층 해수의 광특성을 이해하는 것은 원격탐사 기반의 서식지 분류의 정확도를 높이고, 열대해역 생태계 특성을 파악하는 데에 도움이 된다. 본 연구에서는 팔라우섬과 통가섬 산호초 서식지의 해수 특성을 파악하고자 해수 표면의 파장별 분광특성 자료를 수집하고, 해수 표층의 부유물 농도, 흡광계수 및 원격반사도 특성을 분석하였다. 또한 부유물 농도 분석 결과에 의거 위성자료 기반 부유물 농도 추정 경험적 알고리즘을 개발 및 검증하였으며, 555, 625, 660 nm 세 개 밴드를 이용한 원격반사도 밴드비와 부유물 농도의 결정계수가 0.98로 높은 상관관계를 보였다. 이와 같이 열대해역의 산호초 서식지는 해양광학적으로 빈영양성의 CASE-I 해수 성향이 강하며, 현장자료의 지속적인 수집과 분석을 이용한 모니터링이 필요한 것으로 판단된다.

Adaptive Hyperspectral Image Classification Method Based on Spectral Scale Optimization

  • Zhou, Bing;Bingxuan, Li;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.270-277
    • /
    • 2021
  • The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.

Developing a Cantilever-type Near-field Scanning Optical Microscope Using a Single Laser for Topography Detection and Sample Excitation

  • Ng'ang'a, Douglas Kagoiya;Ali, Luqman;Lee, Yong Joong;Byeon, Clare Chisu
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.229-237
    • /
    • 2021
  • The capabilities of the near-field scanning optical microscope (NSOM) for obtaining high resolution lateral topographical images as well as for mapping the spectroscopic and optical properties of a sample below the diffraction limit of light have made it an attractive research field for most researchers dealing with optical characteristics of materials in nano scales. The apertured NSOM technique involves confining light into an aperture of sub-wavelength size and using it to illuminate a sample maintained at a distance equal to a fraction of the sub-wavelength aperture (near-field region). In this article, we present a setup for developing NSOM using a cantilever with a sub-wavelength aperture at the tip. A single laser is used for both cantilever deflection measurement and near-field sample excitation. The laser beam is focused at the apex of the cantilever where a portion of the beam is reflected and the other portion goes through the aperture and causes local near-field optical excitation of the sample, which is then raster scanned in the near-field region. The reflected beam is used for an optical beam deflection technique that yields topographical images by controlling the probe-sample in nano-distance. The fluorescence emissions signal is detected in far-field by the help of a silicon avalanche photodiode. The images obtained using this method show a good correlation between the topographical image and the mapping of the fluorescence emissions.

Midinfrared Pulse Compression in a Dispersion-decreasing and Nonlinearity-increasing Tapered As2S3 Photonic Crystal Fiber

  • Shen, Jianping;Zhang, Siwei;Wang, Wei;Li, Shuguang;Zhang, Song;Wang, Yujun
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.250-260
    • /
    • 2021
  • A tapered As2S3 photonic crystal fiber (PCF) with four layers of air holes in a hexagonal array around the core is designed in this paper. Numerical simulation shows that the dispersion D decreases and the nonlinearity coefficient γ increases from the thick to the thin end along the tapered PCF. We simulate the midinfrared pulse compression in the tapered As2S3 PCF using the adaptive split-step Fourier method. Initial Gaussian pulses of 4.4 ps and a central wavelength of 2.5 ㎛ propagating in the tapered PCF are located in the anomalous dispersion region. With an average power of assumed input pulses at 3 mW and a repetition frequency of 81.0 MHz, we theoretically obtain a pulse duration of 56 fs and a compression factor of 78 when the pulse propagates from the thick end to the thin end of the tapered PCF. When confinement loss in the tapered PCF is included in the simulation, the minimum pulse duration reaches 72 fs; correspondingly, the maximum compression factor reaches 61. The results show that in the anomalous-dispersion region, midinfrared pulses can be efficiently compressed in a dispersion-decreasing and nonlinearity-increasing tapered As2S3 PCF. Due to confinement loss in the tapered fiber, the efficiency of pulse compression is suppressed.

In Vivo Enhanced Indocyanine Green-Photothermal Therapy for a Subconjunctival Tumor

  • Kim, Chang Zoo;Lee, Sang Joon;Hwang, Sang Seok;Chae, Yu-Gyeong;Kwon, Daa Young;Ko, Taek Yong;Kim, Jun Hyeong;Jung, Min Jung;Masanganise, Rangarirai;Oak, Chulho;Ahn, Yeh-Chan
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.311-321
    • /
    • 2021
  • Indocyanine green (ICG) is a dye approved for use in clinical diagnostics. ICG remains in the intravascular space following intravenous administration, due to its ability to rapidly bind to the plasma proteins, and its therapeutic potential has been studied in well-vascularized cutaneous tumors. Here we have evaluated the clinical response of a subconjunctival tumor to photothermal therapy (PTT) using an ICG-enhanced near-infrared diode laser and its adverse effects, in a rabbit. 22 male New Zealand white rabbits with subconjunctival tumors were enrolled (control group 6, laser-only group 8, laser-with-ICG group 8). Rabbits in the laser-with-ICG group received ICG (twice, 2 mg/kg each time, intravenously) directly followed by irradiation with a diode laser (λ = 810 nm). Rabbits in the laser-only group were irradiated with the diode laser. ICG angiography, ultrasonography, and pathologic examination were performed to evaluate PTT response at specific time points (0, 2, and 4 weeks after PTT). Two weeks after initial treatment, the eight rabbits treated by laser with ICG showed a 100% response rate. There was no clinical response in both laser-only and control groups. ICG-PTT is a potential and effective palliative therapeutic modality for subconjunctival tumors.

Enhancement of Photoluminescence by Ag Localized Surface Plasmon Resonance for Ultraviolet Detection

  • Lyu, Yanlei;Ruan, Jun;Zhao, Mingwei;Hong, Ruijin;Lin, Hui;Zhang, Dawei;Tao, Chunxian
    • Current Optics and Photonics
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2021
  • For higher sensitivity in ultraviolet (UV) and even vacuum ultraviolet (VUV) detection of silicon-based sensors, a sandwich-structured film sensor based on Ag Localized Surface Plasmon Resonance (LSPR) was designed and fabricated. This film sensor was composed of a Ag nanoparticles (NPs) layer, SiO2 buffer and fluorescence layer by physical vapour deposition and thermal annealing. By tuning the annealing temperature and adding the SiO2 layer, the resonance absorption wavelength of Ag NPs matched with the emission wavelength of the fluorescence layer. Due to the strong plasmon resonance coupling and electromagnetic field formed on the surface of Ag NPs, the radiative recombination rate of the luminescent materials and the number of fluorescent molecules in the excited state increased. Therefore, the fluorescent emission intensity of the sandwich-structured film sensor was 1.10-1.58 times at 120-200 nm and 2.17-2.93 times at 240-360 nm that of the single-layer film sensor. A feasible method is provided for improving the detection performance of UV and VUV detectors.

Effects of 630-nm Organic Light-emitting Diodes on Antioxidant Regulation and Aging-related Gene Expression Compared to Light-emitting Diodes of the Same Wavelength

  • Mo, SangJoon;Kim, Eun Young;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.227-235
    • /
    • 2022
  • To investigate the aging-related physiological functions of organic light-emitting diodes (OLEDs), we examined mRNA expression changes in aging-related genes due to oxidative stress inhibition by 630-nm red light OLEDs. As a result of irradiating 630-nm OLED with an intensity of 5 mW/cm2 for 15 min, the viability of dermal fibroblasts significantly increased by 1.3-fold. In addition, reactive oxygen species generated by H2O2 were significantly reduced about 4.9-fold by irradiation with 630-nm OLED. Quantitative reverse-transcription polymerase chain reaction results showed that 630-nm OLEDs altered aging-related gene mRNA expression levels through antioxidant activity. The mRNA expression levels of matrix metalloproteinase1 (MMP1) and MMP9 decreased significantly, by about 2.2- and 2.5-fold, compared to the control group, whereas those of collagen, type I, and alpha 1 increased significantly, by 4.9-fold. The mRNA expression levels of cancer suppression genes p16 and p53 in dermal fibroblasts were also significantly reduced by 630-nm OLED irradiation, by about 1.4- and three-fold, respectively, compared to the control. Overall, it was confirmed that 630-nm OLED irradiation lowered the level of ROS formation induced by H2O2 in dermal fibroblasts, and that this antioxidant effect could regulate the mRNA expression levels of aging- and tumor suppression-related genes. This study shows a link between 630-nm OLED irradiation and anti-aging physiological functions such as antioxidant function, and suggests the potential of OLEDs as a useful light source for skin care.

Cerebral Oxygenation Monitoring during a Variation of Isoflurane Concentration in a Minimally Invasive Rat Model

  • Choi, Dong-Hyuk;Kim, Sungchul;Shin, Teo Jeon;Kim, Seonghyun;Kim, Jae Gwan
    • Current Optics and Photonics
    • /
    • 제6권5호
    • /
    • pp.489-496
    • /
    • 2022
  • Our previous study on monitoring cerebral oxygenation with a variation of isoflurane concentration in a rat model showed that near-infrared spectroscopy (NIRS) signals have potential as a new depth of anesthesia (DOA) index. However, that study obtained results from the brain in a completely invasive way, which is inappropriate for clinical application. Therefore, in this follow-up study, it was investigated whether the NIRS signals measured in a minimally invasive model including the skull and cerebrospinal fluid layer (CSFL) are similar to the previous study used as a gold standard. The experimental method was the same as the previous study, and only the subject model was different. We continuously collected NIRS signals before, during, and after isoflurane anesthesia. The isoflurane concentration started at 2.5% (v/v) and decreased to 1.0% by 0.5% every 5 min. The results showed a positive linear correlation between isoflurane concentration and ratio of reflectance intensity (RRI) increase, which is based on NIRS signals. This indicates that the quality of NIRS signals passed through the skull and CSFL in the minimally invasive model is as good as the signal obtained directly from the brain. Therefore, we believe that the results of this study can be easily applied to clinics as a potential indicator to monitor DOA.