• Title/Summary/Keyword: 광촉매 반응

Search Result 398, Processing Time 0.039 seconds

Photocatalytic Degradation and Detoxification of Bisphenol A Using TiO2 Nanoparticles (TiO2 나노입자 광촉매 반응에 의한 비스페놀 A의 분해 제거 및 독성 저감)

  • Jo, A-Yeong;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.330-336
    • /
    • 2015
  • Photocatalytic degradation of bisphenol A (BPA) in aqueous solution was investigated using $TiO_2$ nanoparticles (Degussa P25) in this study. After a 3 hr photocatalytic reaction (${\lambda}=365nm$ and $I=3mW\;cm^{-2}$, $[TiO_2]=2.0g\;L^{-1}$), 98% of BPA ($1.0{\times}10^{-5}M$) was degraded and 89% of the total organic carbon was removed. In addition, BPA degradation by photolytic, hydrolytic and adsorption reactions was found to be 2%, 5% and 13%, respectively. The reaction rate of BPA degradation by photocatalysis decreased with increasing concentration of methanol that is used as a hydroxyl radical scavenger. This indicates that the reaction between BPA and hydroxyl radical was the key mechanism of BPA degradation. The pseudo-first-order reaction rate constant for this reaction was determined to be $7.94{\times}10^{-4}min^{-1}$, and the time for 90% BPA removal was found to be 25 min. In addition, acute toxicity testing using Daphnia magna neonates (< 24 h old) was carried out to evaluate the reduction of BPA toxicity. Acute toxicity (48 hr) to D. magna was decreased from 2.93 TU (toxic unit) to non-toxic after photocatalytic degradation of BPA for 3 hr. This suggests that there was no formation of toxic degradation products from BPA photocatalysis.

Photocatalytic Degradation of Acetaldehyde and MEK using Batch Type Photo-Reactor (회분식 광촉매반응기를 이용한 아세트알데하이드와 MEK 제거특성 연구)

  • Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1527-1532
    • /
    • 2013
  • The kinetics of photocatalytic degradation of gaseous acetaldehyde and methylethylketone(MEK) were studied by the batch scale of photo-reactor. Variable parameters were initial concentration of acetaldehyde and MEK, water vapor content, and temperature. The photocatalytic degradation rate was increased with increasing concentration of acetaldehyde and MEK, but maintained gentle increase beyond a certain concentration. The Langmuir-Hinselwood model was successfully applied to correlate experimental data. Water vapor inhibited the degradation reaction of acetaldehyde and MEK. The optimum reaction temperature was $45^{\circ}C$ for acetaldehyde and MEK.

Photocatalytic degradation of Trichloroethylene with annulus fluidized bed photoreactor (애뉼러스 유동층 광반응기에서 Trichloroethylene의 광촉매 분해반응 특성)

  • 임탁형;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.05a
    • /
    • pp.215-218
    • /
    • 2002
  • 대기로 배출되는 휘발성 유기화합물 중의 하나인 TCE (Trichroloethylene)를 제거하는 기술들은 설치비 및 운전비가 많이 요구되는 흡착, 응축, 소각기술 들이 있으며, 이를 대체하는 신기술로 광촉매 반응을 이용함으로서 유기휘발물을 상온과 상압에서 광반응시켜 제거함으로서, 설치 및 조업비 측면에서 경제적인 이점이 있다.(중략)

  • PDF

Hybrid Water/Wastewater Treatment Process of Membrane and Photocatalyst (분리막 및 광촉매의 혼성 정수/하수 처리 공정)

  • Park, Jin Yong
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.143-156
    • /
    • 2018
  • In this review article, hybrid water/wastewater treatment processes of membrane and photocatalyst were summarized from papers published in various journals. It included (1) membrane photoreactor (MPR), (2) fouling control of a membrane coupled photocatalytic process, (3) photocatalytic membrane reactors for degradation of organic pollutants, (4) integration of photocatalysis with membrane processes for purification of water, (5) hybrid photocatalysis and ceramic membrane filtration process for humic acid degradation, (6) effect of $TiO_2$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, (7) hybrid photocatalysis/submerged microfiltration membrane system for drinking water treatment, (8) purification of bilge water by hybrid ultrafiltration and photocatalytic processes, and (9) Hybrid water treatment process of membrane and photocatalyst-coated polypropylene bead.

Preparation of Wall Paper Coated with Modified TiO2 and Their Photocatalytic Effects for Removal of NO in Air (변조된 TiO2 광촉매를 이용한 벽지제조와 대기 중의 NO 제거 효과)

  • Kwon, Tae-Ri;Roo, Wan-Ho;Lee, Chul-Woo;Lee, Won-Mook
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, $TiO_2$ powders were prepared by hydro-thermal synthesis with titanium tetra isopropoxide. The prepared $TiO_2$ and the commercial $TiO_2$(P-25, Degussa) were by impregnating $H_2PtCl_6$ solution or the leached solution from the waste catalytic converter of automobile. Modified photocatalysts were analyzed by ICP-AES, UV-DRS, XRD, SEM. And band-gap energy of modified photo-catalyst was found to decreased to 1.76eV and basic structure was changed upon modification by leached solution. Modified photocatalysts were coated on the wallpaper after using mixed solution with adhesive materials(PVC). And then to know the modified photo catalysts tested the reactivity and quantum efficiency in the mixed gas with NO as reactants in the photo catalytic reactor. In the gas phase, photo-catalytic activity of NO was the highest for modified P-25 catalysts(P-25(w)) that P-25(w) was impregnated by leached solution of wasted catalytic converter.

Photocatalytic Degradation of Phenol in $UV/TiO_2$ Packed-bed System ($UV/TiO_2$ 충진 반응기에서 페놀의 광산화 반응)

  • Park, Kil-Soon;Kim, Jong-Hwa;Lee, Sang-Wha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.939-945
    • /
    • 2005
  • The Photocatalytic activity was investigated with the increase of flow rate in a $UV/TiO_2$ packed-bed system. The rate of phenol degradation over $UV/TiO_2$ (dia. = 5 mm) was increased up to 300 mL/min and reached a plateau beyond 400 mL/min. The bead photocatalysts did not exhibit a distinct difference of the phenol degradation rate irrespective of corrosion rates of glass beads and $TiO_2$ coating amounts. Degussa P25 exhibited a higher photocatalytic activity in comparison to other $TiO_2$ sols(Ishihara & N). The performance(activity and durability) of $UV/TiO_2$ packed-bed system can be enhanced by the use of $TiO_2$-coated glass beads instead of granular types that is easily attrited by the shearing force of flowing fluids.

Performance of Waste-air Treating System Composed of Two Alternatively-operating UV/photocatalytic Reactors and Evaluation of Its Characteristics (교대로 운전되는 두 개의 UV/광촉매반응기로 구성된 폐가스 처리시스템의 성능 및 특성 평가)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.574-583
    • /
    • 2021
  • Waste air containing ethanol (100 ppmv) and hydrogen sulfide (10 ppmv) was continuously treated by waste air-treating system composed of two annular photocatalytic reactors (effective volume: 1.5 L) packed with porous SiO2 media carrying TiO2-anatase photocatalyst, one of which was alternately operated for 32 d/run while the other was regenerated by 100 ℃ hot air with 15 W UV(-A)-light on. As its elimination-behavior of ethanol, the removal efficiencies of ethanol at 1st, 2nd and 3rd operation of the photocatalytic reactor system(A), turned out to be ca. 60, 55 and 54%, respectively, at their steady state condition. Unlike the elimination-behavior of ethanol, its hydrogen sulfide-elimination behavior showed repeated decrease of hydrogen sulfide removal efficiency by its resultant arrival at a lower level of steady state condition. Nevertheless, the removal efficiencies of hydrogen sulfide at 1st, 2nd and 3rd operation of the photocatalytic reactor system, turned out to be ca. 80, 75 and 73%, respectively, at their final steady state condition, higher by ca. 20, 20 and 19% than those of ethanol, respectively. Therefore, assuming that adsorption on porous SiO2-photocatalyst carrier was regarded to belong to a reversible deactivation and that decreased % of removal efficiency due to the reversible deactivation of photocatalyst including the adsorption was independent of the number of its use upon regeneration, the increments of the decreased % of removal efficiency of ethanol and hydrogen sulfide, due to an irreversible deactivation of photocatalyst, for the 3rd use of regenerated photocatalyst, compared with the 2nd use of regenerated photocatalyst, were ca. 1 and 2%, respectively, which was insignificant or the less than those of ca. 5 and 5%, respectively, for the 2nd use of regenerated photocatalyst compared with the 1st use of virgin photocatalyst. This trend of the photocatalytic reactor system was observed to be similar to that of the other alternately-operating photocatalytic reactor system.

Microwave-assisted Photocatalytic Degradation of Methylene Blue (마이크로웨이브가 부가된 광촉매에 의한 메틸렌블루의 분해)

  • Kim, Yu-Bong;Jo, A-Ra;Ra, Deog-Gwan;Park, Jae-Hyeon;Kim, Sun-Jae;Jung, Sang-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.817-822
    • /
    • 2008
  • In this study, the photocatalytic degradation of methylene blue in TiO$_2$ particles-dispersed water solution was carried out by irradiating microwave and UV light simultaneously. A microwave-discharged electrodeless UV lamp was developed to use microwave and UV simultaneously for photocatalytic reactions. The results of photocatalytic degradation of methylene blue showed that the decomposition rate increased with the microwave intensity, the circulating fluid velocity, and the amount of TiO$_2$ particles and auxiliary oxidizing agents added. Especially, the rate constant of H$_2$O$_2$-added photocatalytic reaction increased about three times from 0.0075 min$^{-1}$ to 0.0250 min$^{-1}$ when microwave was additionally irradiated. This study demonstrates that the microwave irradiation can play a very important role in photocatalytic degradation using peroxides although it is not easy to quantitatively assess the effect of microwave on photocatalytic reactions from the experimental data of this study.

Characterization of Repeated Deactivation and Subsequent Re-activation of Photocatalyst Used in Two Alternatively-operating UV/photocatalytic Reactors of Waste-air Treating System (교대로 운전되는 두 개의 UV/광촉매반응기로 구성된 폐가스 처리시스템에서의 광촉매의 비활성화 및 재생 특성)

  • Lee, Eun Ju;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.584-595
    • /
    • 2021
  • In this study, the correlation between operating stages of waste air-treating system composed of two alternatively-operating UV/photocatalytic reactors, and the deactivation of photocatalyst used in each operating stage, was investigated by instrumental analysis thereon. The repeated deactivation and subsequent re-generation of photocatalyst used in the waste air treating system of previous investigation performed by Lee and Lim (Korean Chem. Eng. Research, 59(4), 574-583(2021)), were characterized on virgin photocatalyst-carrying porous SiO2 media (A4), used photocatalyst-carrying porous SiO2 media (A1, A2 and A3) collected from the corresponding photocatalytic reactor upon 1st, 2nd, and 3rd run, respectively, regenerated photocatalyst-carrying porous SiO2 media upon 1 time-run (AD1) and 3 times regenerated photocatalyst-carrying porous SiO2 media upon 3 time-runs (AD3) by instrumental analysis including BET analysis, SEM, XPS, SEM-EDS and FT-IR. As a result, the proper regeneration-temperature for deactivated photocatalyst to be regenerated several times (more than 3 times), was suggested below 200 ℃. Such temperature of deactivated photocatalyst-regeneration was almost consistent to the one, according to BET analysis, at which tiny nano-pores blocked by adsorbed ethanol-oxidative and degraded intermediates (AEODI), were regenerated to be reopened through almost complete mineralization of AEODI. In particular, the results of XPS analysis indicated an incurrence of insignificant deactivation of photocatalysis upon 1st run of UV/photocatalytic reactor (A or C) of the previous investigation. In addition, the results of XPS analysis were consistent with the experimental results of the previous investigation in that 1) deactivation of photocatalyst incurred during 2nd run of the UV/photocatalytic reactor (A or C) resulted in decreased removal efficiency, by ca. 5% and 5%, of ethanol and hydrogen sulfide, respectively, compared with its 1st run; 2) there was insignificant difference between the removal efficiencies of its 2nd run and 3rd run. Furthermore, the removal efficiencies of ethanol and hydrogen sulfide for hypothetical 4th run of photocatalytic reactor in the previous investigation, using AD3, were expected to decrease, compared with its 3rd run, by much more than those for 2nd run in the previous investigation did, compared with its 1st run.

GF/C에 고정된 $TiO_2$와 유동층 반응기를 이용한 Rhodamine B의 광촉매 탈색

  • 박영식
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11b
    • /
    • pp.300-304
    • /
    • 2003
  • 수용성 안료인 RhB를 대상으로 GF/C에 고정한 $TiO_2$와 유동층 반응기를 이용하여 제거실험을 수행한 결과 다음과 같은 결론을 얻었다. 1. 고정화 $TiO_2$의 경우도 분말을 이용한 것과 같이 최적 광촉매 투입량이 나타났으며, 최적 투입량은 40.0 g/L이었고, 분말 $TiO_2$를 이용하는 광촉매 반응의 초기속도식과 같이 Langmuir - Hinshelwood 식으로 표현될 수 있었다. 분말 $TiO_2$를 이용한 경우보다 초기반응속도는 2.3배 느렸으나, 고정화 $TiO_2$의 경우 연속공정이 가능하고 촉매회수 공정이 필요하지 않으므로 반응속도만 더 높일 수 있으면 현장적용 가능성이 높다고 사료되었다. 2. 고정화 $TiO_2$의 최소유동을 위한 공기 공급량은 4 L/min, 최대 반응속도는 5 L/min에서 나타나 고정화 $TiO_2$를 충진한 유동층 반응기의 최적 공기 공급량은 최소유동화 속도 부근인 것으로 사료되었다.

  • PDF