• Title/Summary/Keyword: 광중성자

Search Result 29, Processing Time 0.021 seconds

A Study on Photoneutron Characteristics Generated from Target and Collimator of Electron Linear Accelerator for Container Security Inspection using MCNP6 Code (MCNP6 코드를 이용한 컨테이너 보안 검색용 전자 선형가속기 표적과 조준기에서 발생한 광중성자 특성에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.455-465
    • /
    • 2020
  • The purpose of this study is to evaluate the photoneutron characteristics generated by the linear accelerator target and collimator. The computer simulation design firstly, consisted of a target, a single material target and a composite material target. Secondly, it consisted of a cone beam and a fan beam depending on the type of the collimator. Finally, the material of the fan beam collimator is composed of a single material composed of only lead (Pb) and a composite material collimator composed of tungsten (W) and lead (Pb). The research method calculated the photoneutron production rate and energy spectrum using F2 tally from the surface of a virtual sphere at a distance of 100 cm from the target. As a result, firstly the photoneutron production rate was 20% difference, depending on the target. Secondly, depending on the type of the collimator, there was a 10% difference. Finally, depending on the collimator material, there was a 40% difference. In the photoneutron energy spectrum, the average photoneutron flux tended to be similar to the photoneutron production rate. As a result, it was confirmed that the 9 MeV linear accelerator photoneutron are production increased more by the collimator than by the target, and by the material, not the type of the collimator. Selecting and operating targets and collimator with low photoneutron production will be the most active radiation protection. Therefore, it is considered that this research can be a useful data for introducing and operating and radiation protection of a linear accelerator for container security inspection.

Evaluation of Photon and Photoneutron Using High Energy X-ray in Radiation Therapy Room (고에너지 X-선 사용에 따른 방사선치료실 내 광자와 광중성자 평가)

  • Park, Eun-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.427-433
    • /
    • 2016
  • Recently increased use of high energy x-ray in radiation therapy, so therapeutic efficiency of tumors that located deep part also increased. However, photoneutron is problem which is generated caused by photoneuclear reaction. Photoneutron is continually required management because of that is more harmful than photon. In this regard, the study utilizing simulation of the Monte Carlo method is actively progress about photoneutron but measure is deficient. So this study was analyzed the correlation between the measured photon and photoneutron by radiation measurement device. As a result, photons were reduced when distance is farther and field size is smaller. But photoneutron were increased when field size is smaller and increased to a certain distance then reduced.

A Study on the Photoneutron Dose Estimation in Flattening Filter Mode and Flattening Filter Free Mode for Medical Linear Accelerator (의료용 선형가속기의 Flattening Filter Mode와 Flattening Filter Free Mode 간에 광중성자 선량 평가)

  • Yang, Oh Nam;Lim, Cheong Hwan
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.297-302
    • /
    • 2017
  • In this study, the generation of photoneutrons between the 10 MV FF mode and the FFF mode was evaluated and the amount of photoneutrons generated by the 10 MV and 15 MV energy changes in the FFF mode was evaluated. The generated neutrons were evaluated at 13 measurement points and the KTEPC was used to collect the generated neutrons. 10 MV FF mode was measured at 10 MV FF mode and FFF mode at all measurement points. In the superior direction, 0.455mSv and 0.152mSv were the largest, and more than 33% optical neutron was generated in FF. 10 MV in FFF mode, 15 MV in 15 MV, and 0.402 mSv in the direction of Superior, and 6.9% in the direction.

An Analysis into the Dose Rate of Photoneutron Occurring in a Linear Accelerator (선형가속기에서 발생하는 광중성자 선량률 분석)

  • Jang, Howon;Jin, SeongJin;Je, Jaeyong
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.565-569
    • /
    • 2017
  • This research aims at measuring the changes in the dose rate of photoneutron occurring in the process of the investigation into the 10 MV photon beam with a linear accelerator. In addition, the life time of the photoneutron after the end of irradiation was to be analyzed. The photoneutron were measured with a $BF_3$ proportional counter, and the measurement results of the dose rate of the photoneutron were analyzed in 3 parts at intervals of 2 seconds. The measurement results showed that the photoneutron were generated fastest when there was no metal plate inside the radiation field and when there was a lead plate, and that, as for the time that shows the final dose rate at the level of background, the life time was about 1 minute and 40 seconds regardless of the kinds of materials. Therefore, the dose rate according to the time until the photoneutron run out was proved to be different depending on the sorts of the materials and the threshold energy. However, final life time showed similar results regardless of the kinds of the materials, it can be concluded that the kinds of materials don't get involved in the life time of photoneutron.

Evaluation of Photoneutron During Radiation Therapy when Using Flattening Filter and Tracking Jaw with High Energy X-ray (고 에너지 X선 방사선치료 시 Flattening Filter와 Tracking Jaw 사용에 따른 광중성자 발생 평가)

  • Park, Euntae;Jin, Seongjin;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.125-131
    • /
    • 2016
  • Radiation therapy is usually using linear accelerator and used X-ray energy is also getting higher. Recently linear accelerators has been developed 3F mode and tracking jaw technology and that was applied for patient therapy. This study aims at measuring photoneutrons depending on the use of 3F and tracking jaw system when radiation is irradiated using a linear accelerator. The generation of photoneutrons of 3F system was 70% smaller than 2F system and that of tracking jaw system was 83% higher than static jaw system. Photoneutron value is relatively low. However, it must be minimized for Photoneutron exposure during radiation therapy.

Evaluation of Photoneutron by Hypofractionated Radiotherapy (소분할 방사선치료 방식에 따른 광중성자 평가)

  • Park, Eun-Tae;Lee, Deuk-Hee;Kang, Se-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.12
    • /
    • pp.347-354
    • /
    • 2015
  • Hypofractionated radiotherapy prescribes high dose once. Due to this there's a bad point that patients are exposed much dose in normal organ. But recently the study making up for a limit is continuing. Cause of preference of this kind of development of therapy technic and high-energy photon beam, patients can be exposed to additional radiation. Because photoneutron is created by photonuclear reaction. So, in this study I measured photoneutron and analyzed by DVH amounts of radiation from the treatment plan that was used to acute, metastatic pelvis cancer patients who was treated by hypofractionated radiotherapy applied IMRT. As a result, incidence of photoneutron based on the hypofractionated radiotherapy was not a big difference in proportion to the dose fractionation. Protective effects of normal organ by hypofractionated radiotherapy applying IMRT is relatively high compared to 3D CRT but also photoneutron was in created. So a proper treatment plan and a best therapy should be considerated.

The Effect of Photoneutron Dose in High Energy Radiotherapy (10 MV 이상 고에너지 치료 시 발생되는 광중성자의 영향)

  • Park, Byoung Suk;Ahn, Jong Ho;Kwon, Dong Yeol;Seo, Jeong Min;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • Purpose: High-energy radiotherapy with 10 MV or higher develops photoneutron through photonuclear reaction. Photoneutron has higher radiation weighting factor than X-ray, thus low dose can greatly affect the human body. An accurate dosimetric calculation and consultation are needed. This study compared and analyzed the dose change of photoneutron in terms of space according to the size of photon beam energy and treatment methods. Materials and Methods: To measure the dose change of photoneutron by the size of photon beam energy, patients with the same therapy area were recruited and conventional plans with 10 MV and 15 MV were each made. To measure the difference between the two treatment methods, 10 MV conventional plan and 10 MV IMRT plan was made. A detector was placed at the point which was 100 cm away from the photon beam isocenter, which was placed in the center of $^3He$ proportional counter, and the photoneutron dose was measured. $^3He$ proportional counter was placed 50 cm longitudinally superior to and inferior to the couch with the central point as the standard to measure the dose change by position changes. A commercial program was used for dose change analysis. Results: The average integral dose by energy size was $220.27{\mu}Sv$ and $526.61{\mu}Sv$ in 10 MV and 15 MV conventional RT, respectively. The average dose increased 2.39 times in 15 MV conventional RT. The average photoneutron integral dose in conventional RT and IMRT with the same energy was $220.27{\mu}Sv$ and $308.27{\mu}Sv$ each; the dose in IMRT increased 1.40 times. The average photoneutron integral dose by measurement location resulted significantly higher in point 2 than 3 in conventional RT, 7.1% higher in 10 MV, and 3.0% higher in 15 MV. Conclusion: When high energy radiotherapy, it should consider energy selection, treatment method and patient position to reduce unnecessary dose by photoneutron. Also, the dose data of photoneutron needs to be systematized to find methods to apply computerization programs. This is considered to decrease secondary cancer probabilities and side effects due to radiation therapy and to minimize unnecessary dose for the patients.

  • PDF

Assessment of Neutron Skyshine Dose in a Cargo Inspection Facility Using High Energy X-ray (고에너지 X-ray를 이용한 화물검색시설에서의 중성자 Skyshine 방사선량률 평가)

  • Cho, Young-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.3
    • /
    • pp.27-31
    • /
    • 2008
  • The radiation protection measures for the photoneutrons are one of the most important issue of radiation safety in high energy X-ray facilities. When the photoneutrons are released from the facility, the general public as well as occupational workers are exposed to unexpected radiations by neutron skyshine effect. In this study, the photoneutron inventory are calculated using monte carlo mothed, and the neutron skyshine dose rate is assessed using the inventory. A 9MeV X-ray cargo inspection facility is considered as a reference facility.

  • PDF

A Study on the Genetic Risk and Carcinogenesis Probability of Prostate Cancer Patients Due to Photoneutron Generation (광중성자 발생으로 인한 전립샘암 환자의 유전적 위험과 발암의 확률에 관한 연구)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.473-479
    • /
    • 2023
  • In this study, the dose of photoneutrons generated during radiotherapy of prostate cancer using high energy was measured using a photo-stimulated luminescence dosimeter. In addition, this study was intended to study the probability of side effects occurring in the abdomen. A medical linear accelerator capable of generating 15 MV energy, True Beam STx (Varian Medical Systems, USA) and a radiation treatment planning system (Eclipse, Varian Medical Systems, USA) were used. A human body phantom was installed on the couch of the linear accelerator, and an Albedo Neutron Optical Stimulation Luminescence Neutron Detector (Landauer Inc., IL, USA) was used to measure the photoneutron dose. The photoneutron dose value in the abdomen of VMAT and 3C-CRT was 52.8 mSv, more than twice as high as VMAT compared to 3D-CRT. During radiotherapy of prostate cancer, the probability of causing side effects in the abdomen due to light neutron dose was calculated to be 3.2 per 1,000 for VMAT and 1.4 for 3D-CRT. By studying the abdomen, which has a major side effect that can occur during radiotherapy of prostate cancer, it is expected that it will be used as a meaningful study to study the quality of life and stochastic effect of prostate cancer patients

Experimental investigation of the photoneutron production out of the high-energy photon fields at linear accelerator (고에너지 방사선치료 시 치료변수에 따른 광중성자 선량 변화 연구)

  • Kim, Yeon Su;Yoon, In Ha;Bae, Sun Myeong;Kang, Tae Young;Baek, Geum Mun;Kim, Sung Hwan;Nam, Uk Won;Lee, Jae Jin;Park, Yeong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • Purpose : Photoneutron dose in high-energy photon radiotherapy at linear accelerator increase the risk for secondary cancer. The purpose of this investigation is to evaluate the dose variation of photoneutron with different treatment method, flattening filter, dose rate and gantry angle in radiation therapy with high-energy photon beam ($E{\geq}8MeV$). Materials and Methods : TrueBeam $ST{\time}TM$(Ver1.5, Varian, USA) and Korea Tissue Equivalent Proportional Counter (KTEPC) were used to detect the photoneutron dose out of the high-energy photon field. Complex Patient plans using Eclipse planning system (Version 10.0, Varian, USA) was used to experiment with different treatment technique(IMRT, VMAT), condition of flattening filter and three different dose rate. Scattered photoneutron dose was measured at eight different gantry angles with open field (Field size : $5{\time}5cm$). Results : The mean values of the detected photoneutron dose from IMRT and VMAT were $449.7{\mu}Sv$, $2940.7{\mu}Sv$. The mean values of the detected photoneutron dose with Flattening Filter(FF) and Flattening Filter Free(FFF) were measured as $2940.7{\mu}Sv$, $232.0{\mu}Sv$. The mean values of the photoneutron dose for each test plan (case 1, case 2 and case 3) with FFF at the three different dose rate (400, 1200, 2400 MU/min) were $3242.5{\mu}Sv$, $3189.4{\mu}Sv$, $3191.2{\mu}Sv$ with case 1, $3493.2{\mu}Sv$, $3482.6{\mu}Sv$, $3477.2{\mu}Sv$ with case 2 and $4592.2{\mu}Sv$, $4580.0{\mu}Sv$, $4542.3{\mu}Sv$ with case 3, respectively. The mean values of the photoneutron dose at eight different gantry angles ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, $180^{\circ}$, $225^{\circ}$, $270^{\circ}$, $315^{\circ}$) were measured as $3.2{\mu}Sv$, $4.3{\mu}Sv$, $5.3{\mu}Sv$, $11.3{\mu}Sv$, $14.7{\mu}Sv$, $11.2{\mu}Sv$, $3.7{\mu}Sv$, $3.0{\mu}Sv$ at 10MV and as $373.7{\mu}Sv$, $369.6{\mu}Sv$, $384.4{\mu}Sv$, $423.6{\mu}Sv$, $447.1{\mu}Sv$, $448.0{\mu}Sv$, $384.5{\mu}Sv$, $377.3{\mu}Sv$ at 15MV. Conclusion : As a result, it is possible to reduce photoneutron dose using FFF mode and VMAT method with TrueBeam $ST{\time}TM$. The risk for secondary cancer of the patients will be decreased with continuous evaluation of the photoneutron dose.