• 제목/요약/키워드: 광조형장치

검색결과 22건 처리시간 0.017초

Digital Micromirror Device 를 이용한 3차원 마이크로구조물 제작 (Fabrication of 3-Dimensional Microstructures using Digital Micromirror Device)

  • 최재원;하영명;최경현;이석희
    • 한국정밀공학회지
    • /
    • 제23권11호
    • /
    • pp.116-125
    • /
    • 2006
  • MEMS and LIGA technologies have been used for fabricating microstructures, but their shape is not 3D because of difficulty for preparation of many masks. To fabricate 3D microstructures, microstereolithography technology based on Digital Micromirror Device($DMD^{TM}$) was introduced. It has no need of masks and is capable of fabricating high aspect ratio microstructures. In this technology, STL file is the standard format as the same of conventional rapid prototyping system, and 3D parts are fabricated by layer-by-layer according to 2D section sliced from STL file. The UV light source is illuminated to DMD which makes bitmap images of 2D section, and they are transferred and focused on resin surface. In this paper, we addressed optical design of microstereolithography system in consideration of light path according to DMD operation and image-forming on the resin surface using optical design program. To verify the performance of implemented microstereolithography system, 3D microstructures with complexity and high aspect ratio were fabricated.

SLA를 이용한 신속 시작작업에서 최적 성형방향의 결정 (Determination of Optimal Build-up Direction for Stereolithographic Rapid Prototyping)

  • 허정훈;이건우
    • 한국정밀공학회지
    • /
    • 제13권4호
    • /
    • pp.163-173
    • /
    • 1996
  • Stereolithography is a process used to rapidly produce polymer components directly form a computer representation of the part. There are several considerations to be made for the efficient use of the process. Especially, the build-up orientation of part critically affects the part accuracy, total build time and the volume of support structures. The purpose of tis study is to determine the optimal build-up part orientation for the SLA process with improving part accuracy, and minimizing total build time and the volume of support structures. The forst factor is related to the area of surfaces whioch have staircase protrusions after solidification, the second factor is related to the total number of layers, and the third factor is related to the area of the surfaces which need to be supported with support structures. An algorithm is developed to calculate the staircase area, quantifying the process errors by the volume of materials supposed to be removed or added to the part, and the optimal layer thickness for the SLA system which can handle the variable layer thickness. So the optima l part orientation is determined based on the user's selections of primary criter- ion and the optimal thickness of layers is calculated at any part orientations.

  • PDF