• Title/Summary/Keyword: 광전변환

Search Result 223, Processing Time 0.023 seconds

International Conference on Electroceramics 2005 (2005년도 국제 전자세라믹 학술회의)

  • 한국세라믹학회
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2005.06a
    • /
    • pp.1-112
    • /
    • 2005
  • This report is results of a research on recent R&D trends in electroceramics, mainly focusing on the papers submitted to the organizing committee of the International Conference on Electroceramics 2005 (ICE-2005) which was held at Seoul on 12-15 June 2005. About 380 electroceramics researchers attended at the ICE-2005 from 17 countries including Korea, presenting and discussing their recent results. Therefore, we can easily understand the recent research trends in the field of electroceramics by analyses of the subject and contents of the submitted papers. In addition to the analyses of the papers submitted to the ICE-2005, we also collected some informations about domestic and international research trends to help readers understand this report easily. We analysed the R&D trends on the basis of four main categories, that is, informatics electroceramics, energy and environment ceramics, processing and characterization of electroceramics, and emerging fields of electroceramics. Each main category has several sub-categories again. The informatics ceramics category includes integrated dielectrics and ferroelectrics, oxide and nitride semiconductors, photonic and optoelectronic devices, multilayer electronic ceramics and devices, microwave dielectrics and high frequency devices, and piezoelectric and MEMS applications. The energy and environment ceramics category has four sub-categories, that is, rechargable battery, hydrogen storage, fuel cells, and advanced energy conversion concepts. In the processing and characterization category, there exist domain, strain, and epitaxial dynamics and engineering sub-category, innovative processing and synthesis sub-category, nanostructured materials and nanotechnology sub- category, single crystal growth and characterization sub-category, theory and modeling sub-category. Nanocrystalline electroceramics, electroceramics for smart sensors, and bioceramics sub-categories are included to the emerging fields category. We hope that this report give an opportunity to understand the international research trend, not only to Korean ceramics researchers but also to science and technology policy researchers.

  • PDF

Spectral Response of $TiO_{2}$/Se : Te Heterojunction for Color Sensor (컬러센서를 위한 $TiO_{2}$/Se : Te 이종접합의 스펙트럼 응답)

  • Woo, Jung-Ok;Park, Wug-Dong;Kim, Ki-Wan;Lee, Wu-Il
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.101-108
    • /
    • 1993
  • $TiO_{2}$/Se : Te heterojunction for color sensor has been fabricated by RF reactive sputtering and thermal evaporation methods onto glass substrate. The optimum deposition condition of $TiO_{2}$ films was such that RF power was 120 W, substrate temperature was $100^{\circ}C$, oxygen concentration was 50%, working pressure was 50 mTorr for the $TiO_{2}$ film thickness of $1000{\AA}$. In this case, the optical transmittance of $TiO_{2}$ film at 550 nm-wavelength was 85%, resistivity was $2{\times}10^9{\Omega}{\cdot}cm$, refractive index was 2.3, and optical bandgap was 3.58 eV. The composition ratio of 0 to Ti by AES analysis was 1.7. When $TiO_{2}$ films were annealed at $400^{\circ}C$ for 30 min. in $O_{2}$ ambient, the optical transmittance of $TiO_{2}$ films at the wavelength range of $300{\sim}580$ nm was improved from 0 to 25%. When Se : Te films were annealed at $190^{\circ}C$ for 1 min., photosensitivity under illumination of 1000 lux was 0.75. The optical bandgap of Se : Te films was 1.7 eV. The structures of Se : Te films were the hexagonal with (100) and (110) orientation. The spectral response of a-Se was improved by the addition of Te, especially in the long wavelength region. The $TiO_{2}$/Se : Te heterojunction showed wide spectral response, and more improved one than that of a-Si film in the blue light region.

  • PDF

Synthesis and Photovoltaic Properties of New π-conjugated Polymers Based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline (2,3-Dimethyl-5,8-dithiophen-2-yl-quinoxaline을 기본 골격으로 한 새로운 고분자 물질의 합성 및 광전변환특성)

  • Shin, Woong;Park, Jeong Bae;Park, Sang Jun;Jo, Mi Young;Suh, Hongsuk;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • Poly[2,3-dimethyl-5,8-dithiophene-2-yl-quinoxaline-alt-9,9-dihexyl-9H-fluorene] (PFTQT) and poly[2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline-alt-10-hexyl-10H-phenothiazine (PPTTQT) based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline weresynthesized by Suzuki coupling reaction. All polymers were soluble in common organic solvents such as chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran (THF) and toluene. The maximum absorption wavelength and band gap of PFTQT were 440 nm and 2.30 eV, and PPTTQT were 445 nm and 2.23 eV, respectively. The HOMO and LUMO energy level of PFTQT were -6.05 and -3.75 eV, and PPTTQT were -5,89 and -3.66 eV, respectively. The organic photovoltaic devices based on the blend of polymer and PCBM (1 : 2 by weight ratio) were fabricated. Efficiencies of devices were 0.24% (PFTQT) and 0.16% (PPTTQT), respectively. The short circuit current density ($J_{sc}$), fill factor (FF), and open circuit voltage ($V_{oc}$) of the device with PFTQT were $0.97mA/cm^2$, 29% and 0.86 V, and the device based on PPTTQT were $0.80mA/cm^2$, 28% and 0.71 V, 31% and 0.71 V, respectively, under air mass (AM) 1.5 G and 1 sun condition ($100mA/cm^2$).