• Title/Summary/Keyword: 광역지질구조

Search Result 99, Processing Time 0.033 seconds

울산광역시 울주군 삼남면 상천리와 가천리 일원의 지질구조와 제4기단층의 발달 특성

  • 류충렬;최위찬;최성자
    • Proceedings of the KSEG Conference
    • /
    • 2002.04a
    • /
    • pp.193-200
    • /
    • 2002
  • 울산광역시 울주군 삼남면 가천리와 상천리 일원에 발달하는 양산단층대 중남부의 발달특성과 제4기단층을 기재한다. 이 지역에는 중생대 백악기의 퇴적암과 화강암의 경계부 근처에 양산단층대의 주단층대와 부단층대로 확인되는 대규모의 단층파쇄대가 북북동-서남서 내지 남-북의 주향에 거의 수직으로 발달하고 있다. 단층조선은 수평에 가까우며 단층대내의 구조에 의하면, 주로 우향의 주향이동운동이 우세하다. 한편, 상천리와 가천리에는 이들 기반암과 제4기의 하성 사력층의 경계부 부근에서 제4기단층이 2조 발달하고 있다. 이들은 가천 제1단층과 가천 제2단층으로 기존의 양산단층대 일부가 제4기에 재활동한 것으로, 북북동 방향의 주향에 동측으로 고각의 경사를 보인다 단층조선은 거의 수평이며, 제4기 역들이 단층끌림에 의해 배열된 상태나 단층엽리내의 구조에 의하면 우향의 주향이동성운동이 우세하다.

  • PDF

Structural Geometry of a Regional-scale Overturned Fold in the Daecheong Island, Central-western Korean Peninsula (한반도 중서부 대청도에 발달하는 광역규모 과습곡의 구조기하학적 특징)

  • Jeong-Yeong Park;Deung-Lyong Cho;Seung Hwan Lee;Yujung Kwak;Seung-Ik Park
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • This study reports the structural geometry and folding mechanism of a regional-scale overturned fold in the Daecheong Island, central-western part of the Korean Peninsula. Based on low-hemisphere stereographic and down-plunge projections using data from a detailed field survey, we classify the regional-scale fold as an open overturned fold shallowly plunging toward NE. The asymmetric and symmetric parasitic folds in the limb and hinge zones indicate layer-parallel shortening prior to flexural-flow folding. Fold dating must be required to decipher the orogenic process causing the regional-scale overturned fold in the Daecheong Island.

Preliminary Result of Lineament Analysis for the Potential Site Selection of HLW Geological Disposal (HLW 지층처분 광역 후보부지 선정을 위한 선형구조 예비 분석 결과)

  • Ko, Kyoungtae;Kihm, You Hong;Lee, Hong-Jin
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.167-176
    • /
    • 2018
  • It is necessary to consider various geological parameters such as lithology, geological structure, earthquake, hydraulic geology, geochemistry, geological engineering, and geothermal in order to select potential sites for HLW(high-level radioactive waste) geological disposal. In particular, the geological lineament reflects the characteristics of various geological parameters and can be used as an important criterion for site selecting such as nuclear power plants and HLW repositories. In this paper, the Finnish lineament classification method for HLW disposal site selection through the lineament analysis was applied to the lineament data in the Korean peninsula. For this purpose, we used previous lineament data from the KIGAM(Korea Institute of Geoscience and Mineral Resources) and obtained new lineament data from the field geologists such as structural geologist, paleoseismologist, and geomorphologist. To ensure the reliability of the new lineament analysis data, we used high-resolution satellite images and hill-shade relief maps which were constructed by a digital elevation model. In the prevailing direction analysis from the acquired lineament data, the NNE-SSW direction was the most dominant, but the ENE-WSW and NNW-SSE directions also showed highly frequency depending on the experts. Applying the Finnish classification method, the geometrical development characteristics of the lineament corresponding to the Class 1 and 2 used for the wide-wide candidate site were compared. As a result of direction analysis for Class 1, the NNE-SSW direction was the most dominant and the WNW-ESE direction also showed a high frequency. In the case of Class 2, the NNE-SSW is the most prevalent and WNW-ESE or ENE-WSW direction also had highly frequency depending on the experts. Different lineament analysis results based on the same data are interpreted as a result of subjective experience and analytical criteria from the every experts. Therefore, it is necessary to establish integrated criteria and consider geophysical data for the publication of reliable nation-wide lineament map.

Geological Application of Lineaments from Satellite Images - A Case Study of Euiseong Sub-basin (위성 영상선구조의 지질학적 응용 - 의성소분지의 경우)

  • 김원균;김상완;원중선;민경덕;김정우
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.25-36
    • /
    • 2000
  • To evaluate the feasibility of using lineaments for the interpretation of regional geological structures, the extracted lineaments from satellite image and surveyed surface geological features mapped in the field were analyzed for the Euiseong Sub-basin. The lineaments extracted from Landsat-5 TM images show primary directions of N20$^{\circ}$~30$^{\circ}$E, N60$^{\circ}$~70$^{\circ}$E, N60$^{\circ}$~70$^{\circ}$W, which represent the trends of faults, strikes, and joints. In the sedimentary formation in the northern part of Palgongsan Uplift Zone, primary directions of the lineaments are NNE and NWW, and NEE in southern parts. The analysis of satellite lineaments is proved to be very useful to study the large-scale structures and surface geology of the Euiseong Sub-basin, whereas the previous research using brittle tectonics approach was advantaged in the outcrop scale in interpretation.

Regional-residual Separation of Microgravity Data (고정밀 중력탐사 자료의 광역-나머지 이상 분리)

  • Rim, Hyoungrea;Park, Gyesoon;Kim, Chang-Ryol
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • In this paper, we propose a method to apply the polynomial fitting for regional-residual separation of microgravity data based on the characteristics of gravity anomaly without a prior information. Since the microgravity survey is usually carried out in small regions, it is common to approximate regional anomaly by the first-order polynomial plane. However, if the regional anomaly patterns are difficult to be approximated to a first-order plane, the complete gravity anomaly is divided into small zones enough to approximate first-order plane by means of Parasnis density estimation method. The regional-residual separation is then applied on the splitted zones individually. When the gravity anomalies can be splitted spatially, we showed that the residual anomalies can be more effectively extracted based on the regional geological structures by regional anomaly separation from each of the divided regions, rather than applying the entire data set at one time.

Deep geoelectrical structure of Gyeongsang basin (경상분지의 심부 지전기 구조)

  • Park Gyesoon;Lee Choon-Ki;Lee Heuisoon;Kwon Byung-Doo;Cho In-Ky;Oh Seok-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.203-208
    • /
    • 2005
  • We have performed magnetotelluric (MT) surveys to investigate the deep crustal structure of Gyeongsang basin. The MT data were collected in the frequency range from 0.00042 to 320Hz along a profile across the Gyeongsang basin, and 2-D inversion was carried out to interpret the geoelectrical structure. We also extracted gravity data around the MT profile from KIGAM database and calculated the density inversion to compare with the geoelectrical structure. The results obtained are good agreement with geological distribution and indicate contrasts of physical properties of sedimentary rock, igneous rock and metamorphic rock.

  • PDF

Sturctural Geometry of the Pyeongchang-Jeongseon Area of the Northwestern Taebaeksan Zone, Okcheon Belt (옥천대 북서부 태백산지역 평창-정선일대 지질구조의 기하학적 형태 해석)

  • Jang, Yirang;Cheong, Hee Jun
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.541-554
    • /
    • 2019
  • The Taebaeksan Zone of the Okcheon Belt is a prominent fold-thrust belt, preserving evidence for overlapped polyphase and diachronous orogenic events during crustal evolution of the Korean Peninsula. The Pyeongchang-Jeongseon area of the northwestern Taebaeksan Zone is fault-bounded on the western Jucheon and southern Yeongwol areas, showing lateral variations in stratigraphy and structural geometries. For better understanding these geological characteristics of the northwestern Taebaeksan Zone, we have studied the structural geometry of the Pyeongchang-Jeongseon area. For this, we have firstly carried out the SHRIMP U-Pb age analysis of the age-unknown sedimentary rock to clarify stratigraphy for structural interpretation. The results show the late Carboniferous to middle Permian dates, indicating that it is correlated to the Upper Paleozoic Pyeongan Supergroup. In addition to this, we interpreted the geometric relationships between structural elements from the detailed field investigation of the study area. The major structure of the northwestern Taebaeksan Zone is the regional-scale Jeongseon Great syncline, having NE-trending hinge with second-order folds such as the Jidongri and Imhari anticlines and the Nambyeongsan syncline. Based on the stereographic and down-plunge projections of the structureal elements, the structural geometry of the Jeongseon Great syncline can be interpreted as a synformal culmination, plunging slightly to the south at its southern area, and north at the northern area. The different map patterns of the northern and southern parts of the study area should be resulted in different erosion levels caused by the plunging hinges. Considering the Jeongseon Great syncline is the major structure that constrains the distribution of the Paleozoic strata of the Pyeongchang and Jeongseon areas, the symmetric repetition of the lower Paleozoic Joseon Supergroup in both limbs should be re-examined by structural mapping of the Hangmae and Hoedongri formations in the Pyeongchang and Jeongseon areas.

Geological Structure of the Metamorphic Rocks in the Muju-Seolcheon Area, Korea: Consideration on the Boundary of Ogcheon Belt and Ryeongnam Massif (무주-설천 지역 변성암류의 지질구조: 옥천벨트와 영남육괴의 경계부 고찰)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.25-38
    • /
    • 2019
  • The Muju-Seolcheon area, which is known to be located in the boundary of Ogcheon Belt and Ryeongnam Massif (OB-RM), consists of age unknown or Precambrian metamorphic rocks (MRs) [banded biotite gneiss, metasedimentary rocks (black phyllite, mica schist, crystalline limestone, quartzite), granitic gneiss, hornblendite], Mesozoic sedimentary and igneous rocks. In this paper are researched the structural characteristics of each deformation phase from the geometric and kinematic features and the developing sequence of multi-deformed rock structures of the MRs, and is considered the boundary location of OB-RM with the previous geochemical, radiometric, structure geological data. The geological structure of this area is at least formed through four phases (Dn-1, Dn, Dn+1, Dn+2) of deformation. The Dn-1 is the deformation which took place before the formation of Sn regional foliation and formed Sn-1 foliation folded by Fn fold. The Dn is that which formed the Sn regional foliation. The predominant Sn foliation shows a NE direction which matches the zonal distribution of MRs. A-type or sheath folds, in which the Fn fold axis is parallel to the direction of stretching lineation, are often observed in the crystalline limestone. The Dn+1 deformation, which folded the Sn foliation, took place under compression of NNW~NS direction and formed Fn+1 fold of ENE~EW trend. The Sn foliation is mainly rearranged by Fn+1 folding, and the ${\pi}$-axis of Sn foliation, which is dispersed, shows the nearly same direction as the predominant Fn+1 fold axis. The Dn+2 deformation, which folded the Sn and Sn+1 foliations, took place under compression of E-W direction, and formed open folds of N-S trend. And the four phases of deformation are recognized in all domains of the OB-RM, and the structural characteristics and differences to divide these tectonic provinces can not be observed in this area. According to the previous geochemical and radiometric data, the formation or metamorphic ages of the MRs in and around this area were Middle~Late Paleproterozoic. It suggests that the crystalline limestone was at least deposited before Middle Paleproterozoic. This deposition age is different in the geologic age of Ogcheon Supergroup which was recently reported as Neoproterozoic~Late Paleozoic. Therefore, the division of OB-RM tectonic provinces in this area, which regards the metasedimentary rocks containing crystalline limestone as age unknown Ogcheon Group, is in need of reconsideration.