• Title/Summary/Keyword: 광안해역

Search Result 5, Processing Time 0.019 seconds

Prediction Wave Transformation in the Kwangan Beach (광안해역에서의 파랑변형예측)

  • 박정철;김재중;이정만
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.75-81
    • /
    • 2000
  • Water waves propagate over irregular bottom bathymetry are transformed by refraction, diffraction, shoaling, reflection etc. Principal factor of wave transform is bottom bathymetry, but in case of current field, current is another important factor which effect wave transformation. The governing equation of this study is develop as wave-current equation type to investigate the effect of wave-current interaction. This wave-current model was applied to the Kwangan beach which is located at Pusan. The numerical simulation results of this model show the characteristics of wave transformation and flow pattern around the Kwangan beach fairly well.

  • PDF

Prediction of Wave Transformation in the Kwangan Beach (광안해역에서의 파랑변형예측)

  • 박정철;김재중;김인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.6-10
    • /
    • 2001
  • Water waves propagate over irregular bottom bathymetry are transformed by refraction, diffraction, shoaling, reflection etc. Principal factor of wave transform is bottom bathymetry, but in case of current field, current is another important factor which effect wave transformation. The governing equation of this study is develope as wave-current equation type to investigate the effect of wave-current interaction. It starts from Berkhoff's(1972) mild slope equation and is transformed to time-dependent hyperbolic type equation by using variational principal. Finally the governing equation is shown as a parabolic type equation by splitting method. This wave-current model was applied to the kwangan beach which is located at Pusan. The numerical simulation results of this model show the characteristics of wave transformation and flow pattern around the Kwangan beach fairly well.

  • PDF

Analysis of Wave, Water flow Environmental Changes caused by the Installation Structure in Suyoung bay (부산 수영만 해상구조물 설치로 인한 파랑-유동환경변화 분석)

  • Park, Sang-Gil;Lee, Joong-Woo;Cook, Seng-Gi;Yang, Sang-Yong;Kang, Suk-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.132-133
    • /
    • 2009
  • 부산 수영만 해상케이블카 설치예정수역에서 파랑 및 유동환경에 대한 기본 자료 조사와 아울러 대상해역에서 구조물을 설치하였을 때 주요 입사파에 대한 파랑 및 유통환경 변화 특성을 수치모텔 시뮬레이션으로 분석하여 타당성을 검토하고자 하였다. 대상해역에서 광안대교가 설치된 조건이나 이의 외해측으로 일련의 해상케이블 지지구조물을 설치함에 따라 발생할 수 있는 환경 중 해저저질의 이동 및 표사에 영향을 미치는 파랑과 유동장 해석을 대상으로 하였다. 파랑해석은 SWAN 모델을 이용하여 분석하였고, 유동장 해석은 MIKE21 HD 모듈을 이용하여 해석하였다.

  • PDF

선박의 음주관리

  • Kim, Yeong-Mo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.182-184
    • /
    • 2019
  • 2019년 2월 28일 광안대교와 충돌한 러시아 화물선 사고를 계기로 한국의 해상음주 관련규정과 해기사의 음주문화를 조사하였다. 우리나라 해상음주 기준(혈중알코올농도 0.03%)은 국제적 기준(0.05%)보다 높으며 이에 따라 회사의 음주관리기준도 강화되어 있다. 한국 해기사를 대상으로 실태조사를 한 결과 해기사의 음주율은 국민 평균보다 높게 나타났고, 음주동기는 한국민과 유사한 현상을 보이지만 직책, 선종, 해역에 따라 달리 나타나고 있으며, 회사의 음주관리지침에 대해 긍정적으로 평가하고 있다. 음주로 인한 폐해는 크기 때문에 해상직업의 특성을 고려한 음주환경을 만들고, 효과적인 선상 음주통제를 위해서는 선종이나 해역별로 차별화할 필요가 있으며, 해상환경에 맞는 합리적인 음주통제 기준을 마련할 필요가 있다.

  • PDF

A Study on the Characteristics of the Circulation and Diffusion in Suyeong Bay (수관만의 해수유동과 확산지성에 관한 연구)

  • Kim, Young-seup;Han, Young-ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.2
    • /
    • pp.55-61
    • /
    • 1982
  • Simultaneous investigations for drift bottle and dye diffusion experiment were carried out in Suyeong bay. Seawater in Suyeong bay flowed differently in the vicinity of Suyeong river estuary and Nam-cheon Dong respectively. The speed of current did not exceed one knot in this bay. The dye patch moved to Kwangan beach in the dye diffusion experiment. The relationship between apparent diffusivity and diffusion time was appeared as Ka=0.0025t super(1.9). The variance was calculated to be 2.9 power of the diffusion time. And the exponent diffusivity versus the scale of diffusion time was appeared to be 1.3.

  • PDF