• Title/Summary/Keyword: 광물입자

Search Result 386, Processing Time 0.03 seconds

Analysis on Erosional Properties of Fine-Cohesive Sediments In Kunsan Coast (군산해역 미세-점착성 퇴적물의 침식특성 해석)

  • 이현승;조용준;황규남
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.222-226
    • /
    • 2003
  • 대부분의 경우에 하구의 미세-점착성 퇴적물은 보통 무기성 광물과 유기물 및 생화학물의 혼합체이며, 광물 입자들은 주로 점토와 실트로 구성되어 있다. 이러한 혼합체의 침식특성은 사질성 퇴적물과는 달리 입자간의 응집현상에 의한 의해 크게 영향을 받으며, 응집강도는 광물질 구성, 입경분포, 유기물 함량 등으로 묘사되는 퇴적물 자체의 물리ㆍ화학적 기본특성에 따라 크게 변화하고 (Mea, 1986), 특히 저면 퇴적물의 침식 여부는 흐름 전단응력에 의한 저면퇴적물의 저항력 즉, 저면전단강도의 상대적 크기의 차이에 좌우되므로, 그 침식 특성은 저면전단강도 흑은 저면밀도로 묘사되는 저면특성에 따라 크게 변화한다(황규남 등, 2003). 또한 각 해역마다 저면 퇴적물은 퇴적물 공급원, 수동학적 조건, 생태학적 조건 등이 모두 다른 상태에서 형성된 퇴적층이므로, 저면 퇴적물의 기본특성 및 저면특성은 "site- specific" 한 성격을 갖는다. (중략)

  • PDF

The Relationship between the Mineral Characteristics and Spectral Induced Polarization for the Core Rock Samples from the Gagok Skarn Deposit (가곡 스카른 광상의 암석시료에 대한 광물특성과 광대역 유도분극 반응과의 관련성)

  • Heo, Seo-Young;Oh, Ji-Ho;Yang, Kyoung-Hee;Hwang, Jin-Yeon;Park, Sam-Gyu
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.351-363
    • /
    • 2012
  • In order to develop the evaluation techniques for the potential sulfide ore reserves, the relationships between the modal vol.%, grain sizes and textural characteristics of the constituent minerals (e.g., sulfides, oxides and skarn minerals) and the Spectral Induced Polarization (SIP) phase differences are examined for the nine rock cores collected from the Gagok Pb-Zn skarn deposit. The Gagok Pb-Zn skarn deposit occurs mainly along the intrusive contact between the Cretaceous granitic rocks and Cambrian Myobong slate and Pungchon limestone. The nine rock cores have been grouped into three showing distinctive SIP phase differences: the highest (Group I), intermediate (Group II) and lowest (Group III). In relation with the modal vol.% of minerals, Group I is characterized by higher pyrrhotite (25-38 vol.%) and amphibole (40-55 vol.%); Group II by intermediate pyrrhotite (7-13 vol.%) and higher garnet (44-68 vol.%); and lower pyrrhotite (1-7 vol.%) and higher pyroxene (24-66 vol.%) stand for Group III. Furthermore, the grains of all the major constituent minerals become smaller from Group I (<5 mm) through Group II (<2.5 mm) to Group III (<1.6 mm). In particular, the pyrrhotite contents and their grain sizes show logarithmic correlation with the SIP phase differences, Although we present here the results solely from nine samples, the systematic interrelations especially for pyrrhotite indicate the potential ability of SIP measurements as a new mine-evaluation technique for the sulfide ore reservoir.

Mineral Processing Characteristics of Titanium Ore Mineral from Myeon-San Layer in Domestic Taebaek Area (국내 태백지역 면산층 타이타늄 광석의 기초 선광 연구)

  • Yang-soo Kim;Fausto Moscoso-Pinto;Jun-hyung Seo;Kye-hong Cho;Jin-sang Cho;Seong-Ho Lee;Hyung-seok Kim
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.54-66
    • /
    • 2023
  • Titanium's importance as a mineral resource is increasing, but the Korean industry depends on imports. Ilmenite is the principal titanium ore. However, research and development from raw materials have not been investigated yet in detail. Hence, measures to secure a stable titanium supply chain are urgently needed. Accordingly, through beneficiation technology, we evaluated the possibility of technological application for the efficient recovery of valuable minerals. As a result of the experiments, we confirmed that mineral particles existed as fine particles due to weathering, making recovery through classification difficult. Consequently, applying beneficiation technologies, i.e., specific gravity separation, magnetic separation, and flotation, makes it possible to recover valuable minerals such as hematite and rutile. However, there are limitations in increasing the quality and yield of TiO2 due to the mineralogical characteristic of the hematite and rutile contained in titanium ore. Hametite is combined with rutile even at fine particles. Therefore, it is essential to develop mineral processing routes, to recover iron, vanadium, and rare earth elements as resources. On that account, we used grinding technology that improves group separation between constituent minerals and magnetic separation technology that utilizes the difference in magnetic sensitivity between fine mineral particles. The development of beneficiation technology that can secure the economic feasibility of valuable materials after reforming iron oxide and titanium oxide components is necessary.

Mineralogical Change of Acid Sulfate Weathering of Hydrothermally Altered Pyritic Andesite (열수변질 안산암 기원의 함황광물과 특이산성토적 풍화에 따른 광물학적 변화)

  • Kim, Jae-Gon;Jung, Pil-Kyun;Yun, Eul-Soo;Jung, Yeun-Tae;Hyon, Geun-Soo;Zhang, Yongsun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.115-120
    • /
    • 2000
  • Oxidation of pyrite has caused a serious environmental problem such as the acidification of soil and surface water. The mineralogical change of acid sulfate weathering of hydrothermally altered andesite which contained 11.8% of pyrite and was exposed in atmosphere by lay out works for a residential area and a golf course was studied using X-ray diffraction (XRD) and electronmicroscopes. Ferrihydrite, jarosite, and an unidentified water soluble phase were observed as weathering products of the andesite. Under electronmicroscopes, showed aggregate of platy microcrystals; jarosite was platy morphology: water soluble Phase was columnar. Morphology of fresh Pyrite in the andesite changed from pyritrohedron to cubic in its frequency with increasing its particle size. The drainage water was acidic (pH 3.5) and in an equilibrium state with both ferrihydrite and jarosite.

  • PDF

Species and Characteristics of Particles for Traditional Red and Green Pigments used in Temples (사찰에 사용된 적색 및 녹색안료의 종류와 입자특성 분석)

  • Yoo, Young Mi;Han, Min Su;Lee, Jang Jon
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.365-372
    • /
    • 2014
  • The purpose of the present study is to determine the species of red and green pigments used on paintings of Korean temples and also to compare the two pigments according to the particle characteristics. The component analysis shows that the red pigment consists of cinnabar, hematite, and minium and the green pigment are composed of atacamite, celadonite, and malachite. The result suggests that mixture of various pigments were applied to the painting. When it comes to the particle characteristics, there are various hedral or anhedral shapes such as sharp, long, angular, and platy shapes even in the same cinnabar. In addition, the green pigment also shows a similar pattern with those of the red pigment. Up to now, an identification of minerals has been relied on examination of component and crystal shape. However, it is notable that using form related characteristics can be a better and useful method not only for categorization of pigments which are similar in terms of color and species but also specific index.

Microbial Synthesis of Cobalt-Substituted Magnetite Nanoparticles by Iron Reducing Bacteria (미생물을 이용한 나노입자의 코발트로 치환된 자철석의 합성)

  • Yul Roh;Hi-Soo Moon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.111-118
    • /
    • 2001
  • The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. Cobalt-substituted magnetite nanoparticles were synthesized by a thermophilic iron(III)-reducing bacterium, TOR-39, under anaerobic conditions using amorphous Fe(III) oxyhydroxides plus cobalt ( $Co^{2+}$ and $Co^{3+}$ ) as an electron acceptor and organic carbon as an electron donor. Microbial processes produced copious amounts of nm-sized cobalt substituted magnetites. Chemical analysis and X-ray powder diffraction analysis showed that cobalt was substituted into biologically facilitated magnetites. Microbially facilitated synthesis of the cobalt-substituted magnetites may expand the possible use of the specialized ferromagnetic particles.

  • PDF

Analyzing Effective Thermal Conductivity of Rocks Using Structural Models (구조모델을 이용한 암석의 유효열전도도 분석)

  • Cha, Jang-Hwan;Koo, Min-Ho;Keehm, Young-Seuk;Lee, Young-Min
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.171-180
    • /
    • 2011
  • For 21 rock samples consisting of granite, sandstone and the effective thermal conductivity (TC) was measured with the LFA-447 Nanoflash, and mineralogical compositions were also determined from XRD analysis. The structural models were used to examine the effects of quartz content and the size of minerals on TC of rocks. The experimental results showed that TC of rocks was strongly related to quartz content with $R^2$ value of 0.75. Therefore, the proposed regression model can be a useful tool for an approximate estimation of TC only from quartz content. Some samples with similar values of quartz content, however, illustrated great differences in TC, presumably caused by differences in the size of minerals. An analysis from structural models showed that TC of rocks with fine-grained minerals was likely to fall in the region between Series and EMT model, and it moved up to ME and Parallel model as the size of minerals increased. This progressive change of structural models implies that change of TC depending on the size of minerals is possibly related to the scale of experiments; TC was measured from a disk sample with a thickness of 3 mm. Therefore, in case of measurements with a thin sample, TC can be overestimated as compared to the real value in the field scale. The experimental data illustrated that the scale effect was more pronounced for rocks with bigger size of minerals. Thus, it is worthwhile to remember that using a measured TC as a representative value for the real field can be misleading when applied to many geothermal problems.

Timing of the Hydrothermal Alteration Associated with the Fault Activities along the Ulsan Fault Bone, Southeast Korea (울산단층대의 단층활동에 수반된 열수변질작용시기)

  • 조규환;다카기히데오;이와무라아키라;아와지도타;장태우;손승완;이타야테츠마루;오카다도시노리
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.583-593
    • /
    • 2001
  • Clay minerals are common component of fault gouge and have been used to determine the fault activity age using K-Ar dating technique. We carried out XRD and K-Ar analyses of the mica clay minerals from the fault gouge along the Ulsan Fault Zone, southeastern Korea to estimate the timing of the major fault activity. Mica clay minerals for four grain size fractions of 5-2 Um, 2-1 $\mu$m, 1-0.35$\mu$m, and 0.35-0.05 $\mu$m were separated from the gouge samples in the three locations by the hydraulic elutriation and contrifugal separator. Fault gouges are composed of smectite, mica clay minerals, kaolinite, chlorite, quartz, and feldspar. The illite crystallinity of mica clay minerals is the highest in the finest grained fraction with lM polytype, indicating that the aulhigenic mica clay minerals have been concentrated in the fraction. K-Ar ages give some variation from 46 to 35 Ma (330-2), 45 to 39 Ma (16Ww), and 32 to 15 Ma (102Ws) and are the youngest in the finest grained fraction. These results suggest that the hydrothermal alteration associated with the major fault activities along the Ulsan fault Zone took place twice at 39-35 Ma and 15 Ma.

  • PDF

Beneficiation of Low Grade Sericite Using Attrition Scrubbing and Sedimentation (해쇄 및 침강분리에 의한 저품위 견운모의 품위향상 특성)

  • Chae, Sungki;Kim, Hyunsoo;Kim, Sangbae;Kim, Wantae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.137-147
    • /
    • 2017
  • Sericite is a clay mineral that has a wide applications in the industry, depending on its purity. To maintain sericite's purity as high as possible it is necessary to remove its gangue minerals or control their contents prior to use for high value-added products and applications. In this study, the wet beneficiation of sericite by applying selective grinding and sedimentation techniques, were investigated. The ore mineral was composed mainly of sericite, quartz and calcite. Analysis showed that the content of sericite increased along with the particle size decrease, but the contents of impurity minerals as quartz and calcite were tended to decrease relatively with particle size decrease. The results of liberation tests using an attrition scrubber showed that the increase in residence time and slurry density have increased the generation of fine particles in -325 mesh size range. It was observed, however, that the contents of impurities such as quartz and calcite in such fine particles also increased during prolonged scrubbing. In the dispersed form without breaking, the yield of the recovered concentrate was 15.4 wt% and the $K_2O$ content was 9.84 wt%, after the dispersed slurry was allowed to settle for 20 minutes. On the other hand, the concentrate yield was increased to 23.4 wt% after 10 minute attrition scrubbing and 40 minute sedimentation, while its $K_2O$ content was decreased to 9.71 wt%. Most of final products were observed as platelet-shaped particles containing Si, Al and K which are main component of sericite.

Particle Size Characteristics with the Specification of Yeongdong Illite Powder Products (영동 일라이트 분말 제품의 규격에 따른 입도 특성)

  • EunJi Baek;Yu Na Lee;Eun Jeong Kim;Youngseuk Keehm;Hyun Na Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.345-353
    • /
    • 2023
  • This study aimed to investigate the differences in the commercial powder products of the Yeongdong illite based on sales specifications, specifically examining the mineralogical composition, particle size, and chemical composition according to mesh size. The goal was to understand the characteristics of illite powder products and utilize them as a mineralogical database for exploring various applications. Commercial illite powder samples obtained from two mines were subjected to various experiments, including X-ray diffraction (XRD) analysis, laser diffraction particle size analysis, and scanning electron microscopy analysis, X-ray fluorescence analysis. The XRD analysis revealed that the illite powder products from the two mines mainly consisted of illite/muscovite, quartz, and feldspar, indicating similar constituent minerals matching with those of ores for each mine. Laser diffraction particle size analysis indicated the difference in particle size distribution depending on the product specifications, with particle size uniformity tending to increase with increasing mesh sizes. Scanning electron microscopy analysis showed variations in particle shape and size based on specifications. The size of illite particles did not vary significantly with product specifications, with noticeable changes observed mainly in the particle sizes of quartz and feldspar. Furthermore, although there were some differences in chemical composition among the samples from different mines, no significant variations were observed according to specifications. Based on these results, when considering the application of commercial illite powder, it is essential to carefully select it with the consideration of its specifications to account for characteristic variations. The findings of this study present support the great potential of various application fields of commercial illite powder, contributing to industrial utilization and the development of new technologies.