• Title/Summary/Keyword: 광물용해도

Search Result 106, Processing Time 0.026 seconds

Understanding Chemical Characteristics of Seepage Water and Groundwater in a Coastal LPG Storage Cavern using Factor and Cluster Analyses (인자 및 군집분석을 통한 해안 LPG공동 유출수 및 지하수 수질특성의 이해)

  • Jo, Yun-Ju;Lee, Jin-Yong
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.599-608
    • /
    • 2009
  • This study was conducted to examine chemical characteristics and correlations among seepage water, subsurface waters and inland groundwater in and around a coastal underground LPG cavern using factor and cluster analyses. The study area is located in western coast of Incheon metropolitan city and is about 8 km off the coast. The LPG cavern storing propane and butane was built beneath artificially reclaimed island. Mean bathymetry is 8.5 m and maximum sea level change is 10 m. Water sampling was conducted in May and August, 2006 from 22 sampling points. Correlation analysis showed strong correlations among $Fe^{2+}$ and $Mn^{2+}$ (r=0.83~0.99), and Na and Cl (r=0.70~0.97), which indicated reductive dissolution of iron and manganese bearing minerals and seawater ingression effect, respectively. According to factor analysis, Factors 1 (May) and I (August) showed high loadings for parameters representing seawater ingression into the cavern and effect of submarine groundwater discharge, respectively while Factors 2 and IV showed high loadings for those representing oxidation condition (DO and ORP). Factors 4 and II have large positive loadings for $Fe^{2+}$ and $Mn^{2+}$. The increase of $Fe^{2+}$ and $Mn^{2+}$ was related to decomposition of organic matter and subsequent their dissolution under reduced condition. Cluster analysis showed the resulting 6 groups for May and 5 groups for August, which mainly included groups of inland groundwater, cavern seepage water, sea water and subsurface water in the LPG storage cavern. Subsurface water (Group 2 and Group III) around the underground storage cavern showed high EC and major ions contents, which represents the seawater effect. Cavern seepage water (Group 5 and Group II) showed a reduced condition (low DO and negative ORP) and higher levels of $Fe^{2+}$ and $Mn^{2+}$.

The pH Reduction of the Recycled Aggregate Originated from the Waste Concrete by the scCO2 Treatment (초임계 이산화탄소를 이용한 폐콘크리트 순환골재의 중성화)

  • Chung, Chul-woo;Lee, Minhee;Kim, Seon-ok;Kim, Jihyun
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.257-266
    • /
    • 2017
  • Batch experiments were performed to develop the method for the pH reduction of recycled aggregate by using $scCO_2$ (supercritical $CO_2$), maintaining the pH of extraction water below 9.8. Three different aggregate types from a domestic company were used for the $scCO_2$-water-recycled aggregate reaction to investigate the low pH maintenance of aggregate during the reaction. Thirty five gram of recycled aggregate sample was mixed with 70 mL of distilled water in a Teflon beaker, which was fixed in a high pressurized stainless steel cell (150 mL of capacity). The inside of the cell was pressurized to 100 bar and each cell was located in an oven at $50^{\circ}C$ for 50 days and the pH and ion concentrations of water in the cell were measured at a different reaction time interval. The XRD and SEM-EDS analyses for the aggregate before and after the reaction were performed to identify the mineralogical change during the reaction. The extraction experiment for the aggregate was also conducted to investigate the pH change of extracted water by the $scCO_2$ treatment. The pH of the recycled aggregate without the $scCO_2$ treatment maintained over 12, but its pH dramatically decreased to below 7 after 1 hour reaction and maintained below 8 for 50 day reaction. Concentration of $Ca^{2+}$, $Si^{4+}$, $Mg^{2+}$ and $Na^+$ increased in water due to the $scCO_2$-water-recycled aggregate reaction and lots of secondary precipitates such as calcite, amorphous silicate, and hydroxide minerals were found by XRD and SEM-EDS analyses. The pH of extracted water from the recycled aggregates without the $scCO_2$ treatment maintained over 12, but the pH of extracted water with the $scCO_2$ treatment kept below 9 of pH for both of 50 day and 1 day treatment, suggesting that the recycled aggregate with the $scCO_2$ treatment can be reused in real construction sites.

Pollution Property of Heavy Metal in Goseong Cu Mine Area, Kyungsangnam-do, Korea (경남 고성 구리광산 지역의 중금속 오염특성)

  • Jung, Chul-Hyun;Park, Hyun-Ju;Chung, Il-Hyun;Na, Choon-Ki
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.347-360
    • /
    • 2007
  • In order to evaluate the degree and extent of heavy metal pollution and the environmental impacts of abandoned Cu mines in Goseong-gun, soils and paddies were collected from the mine area and have been analysed for heavy metal contents. The heavy metal contents were much higher in mountain soils than in paddy soils. Total content of heavy metals decreased in order of Cu>Zn>Pb>As>Cr>Cd in mountain soils whereas Zn>Pb>Cu>Cr>As>Cd in paddy soils. The extractable amount of heavy metals by 0.1/1N HCl decreased in order of Cu>Pb>Zn>As>Cd>Cr in mountain soils whereas Pb>Cu>Zn>As>Cd>Cr in paddy soils. Although the extraction ratios were highly various depending on the sampling site, their average values were in order of Cd(16%)>Pb(10%)>Cu(9%)>As(4.5%)>Zn-Cr(${\le}2.5%$). The soils investigated were enriched in heavy metals relative to the averages of earth crust as In order of $As{\ge}Cd$>Pb>Zn>Cu>Cr. Pollution index calculated from total or extractable heavy metals of soils indicated that the heavy metal pollution was restricted to mountain soils around abandoned Cu mines, especially the Samsan I mine. The metal contents of brown rice showed no significantly contaminated level as follows; As $nd{\sim}0.87mg/kg,\;Cd\;0.02{\sim}0.34mg/kg,\;Cu\;1.01{\sim}6.25mg/kg,\;Mn\;13.4{\sim}43.2mg/kg,\;Pb\;0.09{\sim}2.83mg/kg,\;and\;Zn\;16.5{\sim}79.1mg/kg$. From the extraction and dispersion properties of heavy metal with the soil pH ($4.5{\sim}7.8$), it can be deduced the conclusion that the heavy metal pollution is spreading in the study area mainly by the detrital migration of waste ore and gangue minerals rather than the dissolution and circulation of heavy metal.

Study of Surfactant Enhanced Remediation Methods for Organic Pollutant(NAPL) Distributed over the Heterogeneous Medium (계면활성제를 이용한 불균질 매질에서 유기오염물(NAPL)의 정화효율에 관한 실험)

  • 서형기;이민희;정상용
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.51-59
    • /
    • 2001
  • Column and box tests were performed to investigate the removal efficiency of NAPL using the surfactant enhanced flushing In heterogeneous medium. Homogeneous Ottawa sand and heterogeneous soil were used to verify the increase of remediation efficiency for the surfactant enhanced flushing in column test. Box tests with two different heterogeneous sub-structure were performed to quantify the capability of the surfactant enhanced flushing as a remediation method to remove NAPL from the heterogeneous medium. Two different grain size sand layers were repeated in the box to simulate the heterogeneous layer formation and the modified fault structure was built to simulate the fault system in the box. O-xylene as a LNAPL and PCE as a DNAPL were used and oleamide as a non-ionic surfactant. The maximum NAPL effluent concentration with 1% oleamide flushing in the homogeneous column test increased about 460 times compared to that with only water flushing and about 250 times increased in the real soil column test. In heterogeneous medium, the maximum effluent concentration increased about 150 times in 1% oleamide flushing and most of NAPL were removed from the box within 8 pore volume flushing, suggesting that the removal efficiency increased very much compared to in only water flushing. Results investigated the capability of the surfactant enhanced remediation method to remove NAPL even in heterogeneous medium.

  • PDF

Effects of soil solution pH on adsorption and desorption of Cd, Cu and Zn by soils (토양중(土壤中)에서 Cd, Cu 및 Zn의 흡착(吸着) 및 용탈(溶脫)에 미치는 토양용액(土壤溶液) pH의 영향(影響))

  • Lim, Soo-Kil;Lee, Young-Jun;Choi, Ho-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.2
    • /
    • pp.119-127
    • /
    • 1991
  • In order to reveal the mechanism of heavy metal behavior in soils relating to factors such as soil pH, organic matter, C.E.C. and soil minerals influencing the activities of heavy metals, Cd, Cu and Zn were applied to soil columns filled with 8 different soils with adjusted soil pH to several levels between 3.0 to 11.0 and the amounts of adsorption and desorption of these heavy metals were measured. 1. At the adsorption maxima of three heavy metals(Cd, Cu and Zn) soil pH appeared to be near 6.0 regardless of properties of the 8 soils, and adsorption gradually decreased above and below pH 6.0. This phenomenon was the same in both heavy metal solutions and mixed solutions, and the mixed solution, containing three heavy metals, revealed slightly higher amounts of Cu adsorption and Cd adsorption. 2. It was also found that the adsorption of Cu and Zn by soils was positively correlated with C.E.C. and the organic matter of soils, respectively. However, the pH values showing maxima of heavy metal adsorption were negatively correlated with organic matter content by contrast with the correlation between the maxima and the C.E.C. values in soils. 3. The adsorption of Cu by soils markedly increased more with $Ca(OH)_2$ application than with NaOH application for soil pH adjusment. This was probably because of Ca effects in Cu precipitation in soils, in addition to the effect of the simple soil pH itself on Cu adsorption 4. It was also revealed that adsorbed Cu was hardly desorbed by $N-NH_4OAC$ solution from the Daejeong soil series compared to the Jeonbug and Yechun soil series. This was because the Daejeong soil series consisted of large amounts of expanding type Vermiculite minerals and also was high in C.E.C. and soil organic matter.

  • PDF

Acclimatization of in vitro Plantlets of Wasabia japonica(Miq.) Matsum. Derived from the Apical Meristem Culture (고추냉이(Wasabia japonica (Miq.) Matsum.)의 정단분열조직유래 기내묘의 순화)

  • 은종선
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.257-261
    • /
    • 1998
  • The repeated subcultures of in vitro plant materials in wasabi became highly vitrified and the capacity for multiple shoot formation from the vitrified plant materials was very low. In order to improve the quality of in vitro propagated planting materials, the experiments were carried out using culture vessels capped with membrane filter(MF). When vitrified shoots were cultured on MS medium with 0.2mg/L BA in the vessels with MF or without MF for 60 days, the shoots in the vessels with MF did not vitrified. In contrast, the shoots grown in the vessels without MF vitrified at 65%. The stomates of vitrified leaves were circular and inflated, whereas those of normal leaves acclimatizated in the vessels with MF were ovate in shape. The hardened shoots were also cultured on MS media without sucrose containing 0.01mg/L IBA in vessels with(photoautotrophic culture) or without(control) MF. Sucrose was necessary for survival of the in vitro plantlets in the vessels without MF. After 20 days of culture, the shoots in the vessels without MF on the sucrose-free media turned yellow and died. But the shoots in the vessels with MF in the sucrose-free media produced a lot of roots. When shoots were cultured on MS medium with 2% sucrose containing 0.01mg/L IBA in the vessels with(photomixotrophic culture) or without(heterotrophic culture) MF, best growth occured in photomixotrophic culture.

  • PDF