• 제목/요약/키워드: 광명역

검색결과 21건 처리시간 0.018초

인공신경망을 이용한 N치 예측 (A Prediction of N-value Using Artificial Neural Network)

  • 김광명;박형준;구태훈;김형찬
    • 지질공학
    • /
    • 제30권4호
    • /
    • pp.457-468
    • /
    • 2020
  • 플랜트, 토목 및 건축 사업에서 말뚝(Pile) 설계 시 어려움을 겪는 주된 요인은 지반 특성의 불확실성이다. 특히 표준관입시험(Standard Penetration Test, SPT)을 통해 측정되는 N치를 얻는 것이 가장 중요한 자료이나 광범위한 모든 지역에서 구하는 것은 어려운 현실이다. 짧은 해외사업 입찰기간 내에 시추조사를 할 경우 인허가, 시간, 비용, 장비접근, 민원 등 많은 제약요건이 존재하여 전체적인 시추조사가 어렵다. 미시추 지점에서 지반 특성은 엔지니어의 경험적 판단에 의존하여 파악되고 있고, 이는 말뚝의 설계 및 물량산출 오류로 이어져서, 공기 지연 및 원가 증가의 원인이 되고 있다. 이를 극복하기 위해서, 한정된 최소한의 지반 실측 자료를 활용하여 미시추 지점에서도 N치를 예측 할 수 있는 기술이 요구되며, 본 연구에서는 AI기법 중 하나인 인공신경망을 적용하여 N치를 예측하는 연구를 수행하였다. 인공신경망은 제한된 양의 지반정보와 생물학적인 로직화 과정을 통하여 입력변수에 대한 보다 신뢰성 있는 결과를 제공하여 준다. 본 연구에서는 최소한의 시추자료의 지반정보를 입력항목으로 하여 다층퍼셉트론과 오류역전파 알고리즘에 의하여 학습된 패턴을 가지고 미시추 지점에서 N치를 예측하는데 그 목적을 두고 있다. 이를 위하여 2개 현장(필리핀, 인도네시아)에 AI기법 적용시 실측값과 예측값에 대한 적정성을 검토하였고, 그 결과 예측값에 대한 신뢰도가 높은 것으로 연구 검토되었다.