• Title/Summary/Keyword: 광계II 활성

Search Result 18, Processing Time 0.022 seconds

Effects of Temperature Stress and Paraquat on SOD Activity and Photochemical Efficiency of PSII in Leaves of Araliaceae Plants (두릅나무과 식물의 SOD 활성과 광계II의 광화학적 효율에 미치는 온도 스트레스와 Paraquat의 영향)

  • 오순자;고정군;김응식;오문유;고석찬
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.199-204
    • /
    • 1999
  • The effects of temperature stress and paraquat on the superoxide dismutase (SOD) activity and the photochemical efficiency of photosystem II were studied in the leaves of Araliaceae plants. The SOD activity of Acanthopanax koreanum leaf discs increased at 4$^{\circ}C$ and 28$^{\circ}C$, and increased significantly at 4$^{\circ}C$ ,28$^{\circ}C$ and 35$^{\circ}C$ in the presence of paraquat. However, the SOD activity of Dendropanax morbifera leaf discs decreased at 4$^{\circ}C$, 28$^{\circ}C$ and 35$^{\circ}C$ regardless of paraquat treatment. The photochemical efficiency of photosystem II, Fv/Fm, of leaf discs of A. koreanum and D. morbifera fell remarkably at 35$^{\circ}C$. In the presence of paraquat, the Ev/Fm values fell slightly at 4$^{\circ}C$ in A. koreanum leaf discs and at 35$^{\circ}C$, in D. morbifera leaf discs. These results indicate that A. koreanum plants are more resistant to temperature stress or oxidative stress than D. morbifera plants although their photochemical efficiency falls slightly at 4$^{\circ}C$ in the presence of paraquat.

  • PDF

Effects of Low Dose $\gamma$-Radiation on the Growth, Activities of Enzymes and Photosynthetic Activities of Gourd (Lagenaria siceraria) (저선량 $\gamma$선 조사가 참박의 초기 생육과 효소 활성 및 광합성 능에 미치는 영향)

  • 이혜연;김재성;백명화;이영근;임돈순
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.3
    • /
    • pp.197-204
    • /
    • 2002
  • Gourd seeds were irradiated with the doses of 0-20 Gy to investigate the effect of the low dose $\gamma$-radiation on the early growth and physiological activity. The stimulating effects of the low dose y- radiation on the early growth were not noticeably high, but were increased generally at 4-16 Gy irradiation group. The catalase and peroxidase activity of cotyledon from seeds irradiated with $\gamma$- radiation were increased at 8 Gy irradiation group. The photochemical activity of leaf was noticeably high at 4 Gy irradiation group. The photochemical yield of PSII, estimated as Fv/Fm, decreased with increasing illumination time by 50% after 4 hrs in the control and 8 Gy irradiation group, while Fo slightly increased. However, Fv/Em in the 4 Gy irradiation group decreased by 40% of inhibition, indicating that photoinhibition decreased by the low dose $\gamma$- radiation. Changes in the effective quantum yield of PSII, $\varphi_{PSII}$ and 1/Fo- l/Fm, a measure of the rate constant of excitation trapping by the PSII reaction center, showed similar pattern to Fv/Em. NPQ decreased by 70% after photoinhibitory treatment with showing similar pattern between the control and the irradiation group. These results showed the positive effect of low dose $\gamma$- radiation on the seedling growth and the reduction of photoinhibition in the 4 Gy irradiation group.

Effect of Cupric Ion on the PSII Activity in Isolated Chinese Cabbage Chloroplasts (배추 엽록체의 광계II 활성에 미치는 구리이온의 영향)

  • 박인호
    • Journal of Plant Biology
    • /
    • v.30 no.3
    • /
    • pp.181-187
    • /
    • 1987
  • Copper inhibited PSII-mediated O2 evolution (H2OlongrightarrowDCIP, H2OlongrightarrowSiMo) but not PSImediated O2 uptake(DCIP. Asc.longrightarrowMV) in isolated Chinese cabbage chloroplasts. Copper toxicity on PSII-mediated O2 evolution was higher at alkaline condition than at acidic condition and was inhanced by light illumination after copper treatment. The increased toxicity by light illumination was not recovered by subsequent dark treatment. The inhibitory effect of copper on H2OlongrightarrowDCIP reaction was higher than that on H2OlongrightarrowSiMo reaction. This result suggests that there may be another inhibitory site of copper on PSII other than water oxidizing side of PSII.

  • PDF

Analysis of Changes in Photosynthetic Ability, Photosystem II Activity, and Canopy Temperature Factor in Response to Drought S tress on Native Prunus maximowiczii and Prunus serrulate (자생 산개벚나무, 잔털벚나무의 건조 스트레스에 따른 광합성 및 광계II 활성, 엽온 인자 변화 분석)

  • Jin, Eon-Ju;Yoon, Jun-Hyuck;Bae, Eun-Ji
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.405-417
    • /
    • 2022
  • The purpose of this study was to describe the photosynthetic features of Prunus maximowiczii and Prunus serrulate Lindl. var. pubescens (Makino) Nakai in response to drought stress. Specifically, we studied the effects of drought on photosynthetic ability and photosystem II activity. Drought stress (DS) was induced by cutting the water supply for 30 days. DS decreased the moisture contents in the soil, and between the 10th and 12th days of DS, both species had 10% or less of x., After the 15th day of DS, it was less than 5%, which is a condition for disease to start. We observed a remarkable decrease of maximum photosynthesis rate starting from 10th day of DS; the light compensation point was also remarkable. Dark respiration and net apparent quantum yield decreased significantly on the 15th day of DS, and then increased on the 20th day. In addition, the stomatal transpiration rate of P. maximowiczii decreased significantly on the15th day of DS, and then increased on the 20th day. Water use efficiency increased on the 15th day of DS, and then decreased on the 20th day. The stomatal transpiration rate of P. serrulate decreased significantly on the 20th day of DS, and then increased afterward, while its water use efficiency increased on the 20th day of DS, and then decreased afterward. These results indicate that the closure of stoma prevented water loss, resulting in a temporary increase of water use efficiency. Chlorophyll fluorescence analysis detected remarkable decreases in the functional index (PIABS) and energy transfer efficiency in P. maximowiczii after the 15th day of DS. Meanwhile, photosystem II activity decreased in P. serrulate after 20 days of DS. In addition, Ts-Ta, PIABS, DIO/RC, ETO/RC followed similar trends as those of the soil moisture content and photosynthetic properties, indicating that they can be used as useful variables in predicting DS in trees.

Chlorophyll Fluorescence and Antioxidative Enzyme Activity of Crinum Leaves Exposed to Natural Environmental Stress in Winter (겨울철 자연환경에 노출된 문주란 잎의 엽록소형광과 항산화효소 활성에 관한 연구)

  • 오순자;고석찬
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.233-241
    • /
    • 2004
  • Chlorophyll fluorescence and antioxidative enzyme activity were investigated from leaves of Crinum asiaticum var. japonicum under the natural condition in winter, in order to monitor plant response and physiological states such as vitality, productivity and so on. In the O-J-I-P transients, the fluorescence intensity of J, I, P-step decreased remarkably depending on temperature drop in winter. The photochemical efficiencies of PSII, Fv/Fm, were significantly low in late winter with decrease of Fm. These results indicate that Crinum plants were affected by seasonal drop of temperature. The catalase activity significantly decreased depending on temperature drop in winter. However, the activity of superoxide dismutase ascorbate peroxidase and peroxidase slightly increased in winter while some isoenzymes appeared in winter. These results, with the remarkable decrease of Ev/Fm in winter, represent that Crinum plants were exposed to oxidative stress and subsequently damaged leading to cell death.

Effects of Different Day / Night Temperature Regimes on Growth and Clove Development in Cool-type Garlic (Allium sativum L.) (한지형 마늘의 생육 및 인편 발달에 미치는 주야간 온도의 영향)

  • Oh, Soonja;Moon, Kyung Hwan;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • We investigated growth, clove development, and photosystem II activity in garlic (Allium sativum L.) grown under different day/night temperature regimes using Soil-Plant-Atmosphere - Research (SPAR) chambers to determine the optimum cultivation temperature and to assess the impact of temperature stress on garlic. In the early stages of growth, plant growth increased markedly with temperature. At harvest time, however, the pseudostem diameter decreased significantly under a relatively low day/night temperature range ($14/10-17/12^{\circ}C$), suggesting that these temperature conditions favor regular bulb growth. At harvest time, the bulb diameter and height were great at $14/10-23/18^{\circ}C$, whereas the bulb fresh weight and number of cloves per bulb were greatest at $17/12-20/15^{\circ}C$. However, the number of regularly developed cloves per bulb was highest at the relatively low temperature range of $14/10-17/12^{\circ}C$, as were the clove length and fresh weight. The photochemical efficiency ($F_v/F_m$) and potential photochemical efficiency ($F_v/F_o$) of photosystem II in the leaves of garlic plants were higher at $14/10-20/15^{\circ}C$ and lower at temperatures below $14/10^{\circ}C$ or above $20/15^{\circ}C$, implying that the $14/10-20/15^{\circ}C$ temperature range is favorable, whereas temperatures outside this range are stressful for garlic growth. Furthermore, at temperatures above $20/15^{\circ}C$, secondary growth of garlic, defined as lateral bud differentiation into secondary plants, continuous growth of the cloves of the primary plants, or the growth of bulbil buds into secondary plants, was enhanced. Therefore, to achieve commercial production of fresh scapes and bulbs of garlic, it may be better to grow garlic at relatively low temperature ranges of $14/10-17/12^{\circ}C$.

The Relationships between Weather Factors and Photosystem II Activity in Three Cool-season Turfgrasses in Summer (한지형 잔디 3종의 하절기 광계II 활성과 기상요인과의 상관성)

  • Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.311-318
    • /
    • 2022
  • In this study, we analyzed the relationships between weather factors and photosystem II activity (Fv/Fm), as a measure of photochemical efficiency, in three cool-season turfgrasses commonly planted on golf courses in Jeju, South Korea: perennial ryegrass (Lolium perenne L.), Kentucky bluegrass (Poa pratensis L.), and creeping bentgrass (Agrostis palustris Huds.). In all three turfgrasses, Fv/Fm was higher during late summer than during early summer. However, in late summer, Fv/Fm was significantly lower in perennial ryegrass than in the other two species. In early summer, Fv/Fm in perennial ryegrass and Kentucky bluegrass was positively correlated with mean low temperature and extreme minimum temperature, whereas, in late summer, this parameter in Kentucky bluegrass and creeping bentgrass was positively correlated with relative humidity, and in creeping bentgrass was negatively correlated with mean high temperature, mean low temperature, and extreme maximum temperature. These results indicate that raising low temperatures is favorable for perennial ryegrass and Kentucky bluegrass in early summer, whereas, in late summer, the lowering of high temperatures proves to be beneficial for creeping bentgrass, and raising relative humidity is conducive to the growth of Kentucky bluegrass and creeping bentgrass. These findings will contribute to improving the selection and management of turfgrasses on golf courses and sports fields.

광량과 온도 변화에 따른 고추(Capsicum annuum L.) 잎 광계 II의 광억제

  • 홍영남
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.373-380
    • /
    • 1995
  • Photoinhibition of photosystem (PS) n was induced in primary leaves of 25 day-old peppers grown $100\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1},\;at\;25^{\circ}C$. The modulation of PSII functionality in vivo was induced by varying both irradiance ($0-3000\;{\mu}molm^{-2}{\cdot}s^{-1}$) and duration (0-70 min) of light treatment. The functionality of PSII was investigated in terms of photochemical efficiency of PSII (Fv/Fm) and quantum yield of $O_2$ evolution, and expressed as a function of photon exposure [$mol\;photons{\cdot}m^{-2}$, the product of irradiance and duration of light treatment (Bell and Rose, 1981)]. Contrary to the linear decline of Fv/Fm ratio showing 50% decreases by absorption of $10\;mol\;photons{\cdot}m^{-2$, quantum yield of $O_2$ evolution decreased biphasically with increasing photon exposure, showing 50% decreases by absorption of $5.5\;mol\;photons{\cdot}m^{-2}$. Treatment of low temperature at $15^{\circ}C$ for 30 min alone did not affect the functionality of PSII, but high temperature ($45^{\circ}C$) significantly inactivated PSII activity. However, when Jeaves of pepper were subjected to low or high temperature in the presence of light, PSII was substantially photoinactivated. These results suggest the presence of different photoinhibitory mechanisms at low and high temperature.rature.

  • PDF

The responses of Growth and Physiological traits of Acer triflorum on Calcium Chloride ($CaCl_2$) Concentration (염화칼슘 농도에 따른 복자기의 생장 및 생리적 반응 특성)

  • Kwon, Min-Young;Kim, Sun-Hee;Sung, Joo-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.500-509
    • /
    • 2014
  • To prevent freezing of the road by fallen snow, Calcium chloride($CaCl_2$) as a deicer is used to very often and it can be harmful to roadside trees. This study was conducted to investigate the effects of Calcium chloride($CaCl_2$) as a deicer on growth and physiological traits of Acer triflorum according to different concentration of $CaCl_2$. We measured growth, chlorophyll contents, gas exchangement characteristics, chlorophyll fluorescence and mineral nutrition concentration in plant and soil. The experimental group was composed of four treatments including 0mM(control), 9mM(0.5 %), 18mM(1.0 %), 54mM(3.0 %). Before germinating new shoot, the dissolution of $CaCl_2$ was irrigated twice interval of a week. At 30 days after treatment, all treatments decreased total cholorophyll content, photosynthetic rate, transpiration rate, stomatal conductance and photochemical efficiency($F_v/F_m$) with increasing concentration of $CaCl_2$ and especially, they significantly reduced in 3.0 % treatment. In contrast, chlorophyll a/b ratio increased with an increase of $CaCl_2$ concentration and water use efficiency increased in 1.0 % and 3.0 % treatments. At 50 days after treatment, all treatments were decreased in chl a, chl b, total chlorophyll content, carotenoid content, photosynthetic capacity, photochemical efficiency($F_v/F_m$) and quantum yield of photosystem II(${\Phi}_{PSII}$) compared with control and 3.0 % treatments were withered. $Ca^{2+}$ and $Cl^-$ were accumulated in leaves and soil, which inhibited water absorption and electron transport and it caused the reduction of height growth rate more than 50 %. Although there was a little difference according to time and $CaCl_2$ concentration, all treatments decreased in growth rate and physiological activity slowed down. As time passed, these results got worse. Therefore we need to take a measure earlier in order to minimize damage of trees.