• Title/Summary/Keyword: 관 탐사

Search Result 120, Processing Time 0.022 seconds

Study to Improve the Accuracy of Non-Metallic Pipeline Exploration using GPR Permittivity Constant Correction and Image Data Pattern Analysis (GPR 유전률 상수 보정과 영상자료 패턴분석을 통한 비금속 관로 탐사 정확도 확보 방안)

  • Kim, Tae Hoon;Shin, Han Sup;Kim, Wondae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.109-118
    • /
    • 2022
  • GPR (Ground Penetrating Radar), developed as a technology for geotechnical investigations such as sinkhole exploration, was used limitedly as a method to resolve undetectable lines in underground facility exploration. To improve the accuracy of underground facility data, the government made it possible to explore underground facilities using a non-metallic pipeline probe from July 2022. However, GPR has a problem in that the exploration rate is lowered in the soil with high moisture content, such as soft soil, such as clay layer, and there is a lot of variation in long-term accuracy. In this study, as a way to improve the accuracy of exploration considering the characteristics of GPR and the environment of underground facilities, we propose a GPR exploration method for underground facilities using permittivity constant correction and pattern analysis of GPR image data. Through this study, the accuracy of underground facility exploration and high reproducibility were derived as a result of field verification applying GPR frequency band and heterogeneous GPR.

A Study on Risk Evaluation Method of Ground Subsidence around Sewer (하수관로 주변 도로함몰 위험도 평가 방법에 관한 연구)

  • Kim, Jinyoung;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.7
    • /
    • pp.13-18
    • /
    • 2018
  • Recently, road subsidence has been increasing in urban areas, threatening the safety of citizens. In the lower part of the road, various road facilities such as water supply and drainage pipelines and telecommunication facilities are buried, and the deterioration of the facilities causes the road subsidence. In particular, in the case of old sewer pipes which are attracting attention as a main cause of road subsidence, the management of sewer pipe replacement, repair and reinforcement is being performed depending on the burial year. Therefore, in this study, we tried to suggest a reliable road subsidence risk assessment method considering various sewer specifications and surrounding environment information and CCTV exploration result and GPR exploration result.

Application of Ground Penetrating Radar for Archaeological Monuments (지하레이다를 이용한 고고학 탐사)

  • Shon, Howoong
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.745-752
    • /
    • 1996
  • A ground penetrating radar survey with a 500 MHz radar antenna was applied to make archaeological investigation in Nakajima of Ishikawa Prefecture, Japan. The ability of the radar system to aid in the archaeological preservation of burial ground was the primary concern of the experiments. The average variance of the radar wave returned from progressively deeper reflectors in a tomb were contoured at 2.4 nanoseconds intervals. The results of analysis indicates the location of trenches and the coffin area at the tomb site. The orientation of the coffin is dearly defined on contour maps made below 9.6 nanoseconds horizon. The general features detected by the GPR were also reconfirmed by electric resistivity survey made at the site. The radar was accurate in ascertaining the location, orientation, and the general construction style of the coffin.

  • PDF

Optimal Design of Municipal Water Distribution System (관수로 시스템의 최적설계)

  • Ahn, Tae Jin;Park, Jung Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1375-1383
    • /
    • 1994
  • The water distribution system problem consists of finding a minimum cost system design subject to hydraulic and operational constraints. Since the municipal water distribution system problem is nonconvex with multiple local minima, classical optimization methods find a local optimum. An outer flow search - inner optimization procedure is proposed for choosing a better local minimum for the water distribution systems. The pipe network is judiciously subjected to the outer search scheme which chooses alternative flow configurations to find an optimal flow division among pipes. Because the problem is nonconvex, a global search scheme called Stochastic Probing method is employed to permit a local optimum seeking method to migrate among various local minima. A local minimizer is employed for the design of least cost diameters for pipes in the network. The algorithm can also be employed for optimal design of parallel expansion of existing networks. In this paper one municipal water distribution system is considered. The optimal solutions thus found have significantly smaller costs than the ones reported previously by other researchers.

  • PDF

GEOTECHNICAL ENVIRONMENT SURVEY (2) (고심도 지반환경 조사 - 비파괴 물리탐사의 적용 (2))

  • HoWoongShon;SeungHeeLee;HyungSooKim
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.261-268
    • /
    • 2003
  • Lots of various utilities are buried under the surface. The effective management of underground utilities is becoming the very important subject for the harmonious administration of the city. Ground Penetrating Radar(GPR) survey including other various underground survey methods, is mainly used to detect the position and depth of buried underground utilities. However, GPR is not applicable, under the circumstances of shallow depth and places, where subsurface materials are inhomogeneous and are composed of clay, salt and gravels. The aim of this study is to overcome these limitations of GPR and other underground surveys. High-frequency electromagnetic (HFEM) method is developed for the non-destructive precise deep surveying of underground utilities. The method is applied in the site where current underground surveys are useless to detect the underground big pipes, because of poor geotechnical environment. As a result, HFEM survey was very successful in detecting the buried shallow and deep underground pipes and in obtaining the geotechnical information, although other underground surveys including GPR were not applicable. Therefore this method is a promising new technique in the lots of fields, such as underground surveying and archaeology.

  • PDF

A study on designing bird-watching science museum in the Yellow Sea area (서해안지역 조류 탐사 관련 과학관의 활성화에 관한 연구)

  • Kim, Jin-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4212-4219
    • /
    • 2010
  • The purpose of this study is to examine three bird-watching science museums near the Yellow-sea area. The bird-watching science museum is similar to conventional science museum in terms of exhibiting objects, but in detail the bird-watching science museum is specialized in bird-watching and study it's ecology. So the sight should be near the place where the bird can be seen easily and the building should be built in ecological way. Now establishing museum in local area as a community development is pretty popular in Korea. as tourism purpose. But the main purpose of bird-watching museum should be educational and cultural way and next tourism. So in this study I tried to pick designing point of architecture and exhibition of bird-watching museum.

Effects of Residual Magnetization on MEL Non-destructive Inspection of Gas Pipeline (가스관의 자속누설탐사에서 잔류자화의 영향에 관한 연구)

  • Jang, Pyung-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.143-148
    • /
    • 2004
  • Effects of residual flux density M$_{res}$ and number of inspection on the detection voltage and flux density B of the gas pipeline were investigated in MFL inspection, which is widely used for the non-destructive inspection in a gas pipeline. A simulation equipment composed of the magnetizer and iron ring attached on an aluminum disc was constructed instead of a huge gas pipeline facility. With this system. the iron ring could be perfectly demagnetized and signals from the bolt screw stuck on the disc could be clearly detected so that the effects of M$_{res}$S and the inspection number on the detection voltage and B of iron ring were effectively investigated. With increasing the number of inspection, M$_{res}$, B of the iron ring and the detection voltage decreased and then kept at constant values while final M$_{res}$ increased with increasing initial M$_{res}$. If inspection condition were kept unchanged, the detection voltage was proportional to the last M$_{res}$ of the iron ring instead of B. This was probably due to magnetic hysteresis of the iron ring inherited from magnetic domain so that consideration on the magnetic hysteresis was inevitable in the analysis of MFL signal from defects of a gas pipeline. A new inspection scheme using the magnetizer with reversed magnetization in the subsequent inspection was proposed from the result that a high detection voltage could be obtained in the first inspection of gas pipeline with positive M$_{res}$.

A Ground Penetrating Radar Detection of Buried Cavities and Pipes and Development of an Image Processing Program (지반 공동 및 매립관의 지반 투과 레이더 탐사 및 이미지 처리 프로그램 개발)

  • Lee, Hyun-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.177-184
    • /
    • 2017
  • Many ground subsidence accidents have happened in Korea. The accident was caused by the subsidence and leakage of the deteriorated sewage pipe. This study aims to establish the empirical data of the ground penetration radar(GPR) detection for ground subsidence. A test bed was also manufactured for the same purpose. The GPR detection variables are embedment depth and horizontal distance of embedded cast iron pipe and expanded polystyrene(EPS). From the detection results, the EPS embedded by a depth of 1.5m was difficult for detection. The EPS closely embedded to the cast iron pipe within a 0.5m distance had a very strong cast iron pipe signal. Therefore, the detection was impossible. This study developed an image processing program, called the GPR image processing program(GPRiPP), to process the GPR detection results. Its major function is the gain function, which amplifies the wiggle wave signal. Compared to the existing programs, the GPRiPP is capable of showing a similar image processing performance.