• Title/Summary/Keyword: 관측포탄

Search Result 2, Processing Time 0.015 seconds

Simulation Based Study to Verify the Required Operational Capability of the Para-Observation Munition (관측포탄 작전운용성능 검증을 위한 시뮬레이션 연구)

  • Ha, Set Byul;Kwon, Ojeong;Lee, Youngki;Cho, Namsuk
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.87-101
    • /
    • 2021
  • Required Operational Capability(ROC), which means the performance of a weapon system, is determined when estimating the requirements of a new weapon system. It is very important to define the ROC as it has a decisive influence from acquisition of a weapon system to tactical operation. In this study, we propose a simulation methodology to verify the ROC of the Para-Observation Munition(POM), a newly developed weapon system. To this end, we propose a discrete-event simulation model that takes main performance of the weapon system constituting the ROC and environmental factors that affect performance of the weapon system as input values, and outputs operational effect as a result value. It describes various simulation logic required to implement a simulation model, and explains how to verify ROC using various simulation results such as sensitivity analysis. POM is a weapon system that does not have a similar one and that is difficult to directly utilize the military analysis model. This study can be used as a methodology to analyze the ROC and predict operational effects of weapon systems such as POM.

A Geometric Analysis of Frame Photography Using a Body-Fixed Image Sensor for Aerial Observation (공중관측용 몸체고정형 영상센서의 프레임촬영에 대한 기하학적 분석 방법)

  • Lee, Youngki;Jeong, Jinhong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.590-598
    • /
    • 2019
  • Aerial photographs taken by an image sensor fixed on a flight body, e.g. without a gimbal, are generally distorted according to its attitude, altitude and angle of view in flight. This can result in a significant difficulty of analyzing geometric information which should be integrated for numerous still frames. In this study, a simulation method of observation performance that uses geometric relationships between navigation data and image data is suggested, and this method is shown to be very useful for easily examining the integrated information such as the total range of photography, the time of target acquisition, etc.