• 제목/요약/키워드: 관측변수

검색결과 1,421건 처리시간 0.028초

면적강우량 산정을 위한 관측망 최적설계 연구 (Optimal Network Design for the Estimation of Areal Rainfall)

  • 이재형;유양규
    • 한국수자원학회논문집
    • /
    • 제35권2호
    • /
    • pp.187-194
    • /
    • 2002
  • 하천유역 면적강우량 산정의 정확도를 개선하기 위하여 기존 강우관측자료의 통계적 특성을 이용한 강우관측망의 최적설계방법을 연구하였다. 최적설계를 위한 목적함수는 면적강우량의 추정오차 및 지점강우량 관측비용의 항으로 구성하고, 그 값이 최소인 관측망은 선정하였다. 통계f7파의 추정방법으로는 통계적 분산 산정방법인 크리깅 모형을 채택하였다. 비용은 강우관측소의 설치비와 연간운영 비론 적용하고, 오차항과 비용항의 통합에는 등치매개변수를 이용하였다. 연구된 최적설계방법을 댐 신설로 강우관측소 증설이 필요한 용담댐 유역에 적용하여, 대상유역의 최적 강우관측망을 제안하였다.

장기유출모형의 매개변수 지역화에 관한 연구 (A study on regionalization of long-term runoff model parameters)

  • 조복희;배덕효;김문주;김한준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1032-1036
    • /
    • 2004
  • 수자원계획수립시 가장 큰 문제점 중의 하나는 관심대상유역의 관측자료가 없는 경우이다. 이와 같은 미계측유역의 경우 통상 단순히 인근관측소 자료를 면적비로 전이시켜 사용하거나, 인근 계측유역에서 유출모형의 매개변수를 추정하여 매개변수를 전이시키는 방법을 사용하고 있다. 본 연구에서는 계측유역에서 추정한 장기유출모형의 매개변수를 미계측유역으로 전이시킬 때 유역별 토양수분보유능을 이용하여 보다 객관적으로 매개변수를 전이하는 방법을 제시하였다. 방법으로는 정교한 토양수분모의가 가능한 PRMS 모형을 이용하여 자료의 정도가 높은 5개 댐지점에서 매개변수를 검${\cdot}$보정한 다음, 소양강댐과 충주댐유역을 미계측유역으로 가정하여 계측유역의 토양수분보유능과 가장 유사한 유역에 매개변수를 전이하여 결과를 분석하였다.

  • PDF

인공신경망 기법을 이용한 비매개변수적 빈도해석 (Rainfall frequency analysis using artificial neural network)

  • 정한석;이은정;강문성;박승우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.310-310
    • /
    • 2012
  • 확률강우량 산정은 수공구조물의 설계에 있어서 중요한 과정이다. 확률강우량을 산정함에 있어 지난 수십년간 모멘트법, 최우도법, 확률가중모멘트법, 그리고 L-모멘트법 등의 매개변수적 방법이 발달되어 적용되어 왔다. 매개변수적 빈도해석 방법은 그 적용성이 여러 연구를 통해 검정되었지만 가정한 확률분포와 매개변수 추정방법에 따라 확률강우량이 달라지며 강우지속시간과 기후변화 등에 따른 분포의 변동성을 고려해야 하는 단점이 있다. 매개변수적 빈도해석 방법의 단점을 극복하기 위하여 최근에 핵밀도함수 등을 포함한 다양한 비매개변수적 빈도해석 방법이 제안되고 있다. 본 연구에서는 서울기상관측소의 지난 50년간 지속시간 24시간 강우량을 바탕으로 수자원 분야에서 다양하게 적용된 바가 있는 인공신경망 기법과 대표적인 매개변수적 빈도해석 방법인 L-모멘트법을 이용하여 확률강우량을 산정하고 비교하였다. 그 결과 인공신경망 기법은 전통적인 매개변수방법의 하나인 L-모멘트법 보다 확률강우량 산정에 있어서 높은 정확도를 가지는 것으로 나타났다.

  • PDF

급사면에 형성된 일시적인 포화대의 지하수위 변화에 대한 TOPMODEL의 예측능력 검증

  • 안중기
    • 대한지리학회:학술대회논문집
    • /
    • 대한지리학회 2002년도 추계학술대회 요약집
    • /
    • pp.45-48
    • /
    • 2002
  • TOPMODEL은 지표유출과 중간류유출을 비교적 적은 수의 매개변수와 물리적 근거를 기반으로 모의하는 수문모형이다. 현재까지 TOPMODEL은 온대습윤지역의 소유역 유출모의에 적용성이 우수하다는 연구결과가 많이 발표되었으며, 우리나라에서도 이 모델을 이용한 유역유출 모의에 탁월하다는 연구 결과들이 나오고 있다. 이런 연구들은 대부분 모델의 중요 매개변수를 유역유출 관측자료로부터 유도하고, 이 매개변수를 이용하여 유역유출을 모의한 연구들로 TOPMODEL에서 제시한 것 같은 유역내의 지하수위변화, 지표유출, 중간류유출 등의 수문학적 반응 발생여부를 조사하지 못하였다.(중략)

  • PDF

순환모형에 대한 EM 알고리즘의 초기값 선정방법의 개선 (An improvement on initial value selection in applying an EM algorithm for recursive models)

  • 정미숙;김성호
    • 응용통계연구
    • /
    • 제12권2호
    • /
    • pp.433-447
    • /
    • 1999
  • 검사관련 능력과 문항점수사이의 관계를 모형화하기 위해 사용한 순환모형에서 관측불능인 능력상대변수를 비롯한 모든 변수들이 범주형 변수라 가정하자. 이 범주형 자료를 위한 모수추정문제를 다루기 위해 EM 방법을 이용했는데, EM 방법은 사용하기에 편리하지만 순환모형에 대한 추정값이 적절하지 않는 경우가 발생한다. 그 주된 원인중의 하나로 초기값 선정의 잘못을 들 수 있는데, 본 논문에서는 이 외에 구조상의 결함도 그 원인이 됨을 경험적으로 보았다. 따라서 구조적 결함을 먼저 해결하면 보다 효과적인 초기값을 선정할 수 있으리가 기대한다.

  • PDF

Tank 모델에 의한 형산강 하천유량 산정에 관한 연구

  • 윤한삼;이인철;류청로;박종화
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2002년도 추계 수산관련학회 공동학술대회발표요지집
    • /
    • pp.168-169
    • /
    • 2002
  • 본 연구에서는 Tank model의 이론과 구조를 설명하고, 형산강 수계의 강우-증발-유량관측자료를 사용하여 모형의 매개변수를 산정하고 이를 기준값으로 하여 각 매개변수들의 특성을 파악하고자 민감도 분석을 실시하였다. 민감도 분석을 통해서 얻어진 Tank model 매개변수들의 특성은 앞으로 형산강에 대한 하천 유출량 산정시 도움을 줄 수 있을 것이다. 이상과 같이 검증되어진 Tank모델을 사용하여 1997년부터 2001년까지의 5년간의 강우량, 증발산량 자료를 바탕으로 형산강 일별 하천 유출량을 산정하고 계절별, 권역별 하천수의 유하 특성에 대해서 고찰하였다. (중략)

  • PDF

유역 및 강우 특성인자를 고려한 딥러닝 기반의 강우손실 예측 (Prediction of rainfall abstraction based on deep learning considering watershed and rainfall characteristic factors)

  • 정민엽;김대홍;김석균
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.37-37
    • /
    • 2022
  • 유효우량 산정을 위하여 국내에서 주로 사용되는 모형은 NRCS-CN(Natural Resources Conservation Service - curve number) 모형으로, 유역의 유출 능력을 나타내는 유출곡선지수(runoff curve number, CN)와 같은 NRCS-CN 모형의 매개변수들은 관측 강우-유출자료 또는 토양도, 토지피복지도 등을 이용하여 유역마다 결정된 값이 사용되고 있다. 그러나 유역의 CN값은 유역의 토양 상태와 같은 환경적 조건에 따라 달라질 수 있으며, 이를 반영하기 위하여 선행토양함수조건(antecedent moisture condition, AMC)을 이용하여 CN값을 조정하는 방법이 사용되고 있으나, AMC 조건에 따른 CN 값의 갑작스런 변화는 유출량의 극단적인 변화를 가져올 수 있다. NRCS-CN 모형과 더불어 강우 손실량 산정에 많이 사용되는 모형으로 Green-Ampt 모형이 있다. Green-Ampt 모형은 유역에서 발생하는 침투현상의 물리적 과정을 고려하는 모형이라는 장점이 있으나, 모형에 활용되는 다양한 물리적인 매개변수들을 산정하기 위해서는 유역에 대한 많은 조사가 선행되어야 한다. 또한 이렇게 산정된 매개변수들은 유역 내 토양이나 식생 조건 등에 따른 여러 불확실성을 내포하고 있어 실무적용에 어려움이 있다. 따라서 본 연구에서는, 현재 사용되고 있는 강우손실 모형들의 매개변수를 추정하기 위한 방법을 제시하고자 하였다. 본 연구에서 제시하는 방법은 인공지능(AI) 기술 중 하나인 딥러닝(deep-learning) 기법을 기반으로 하고 있으며, 딥러닝 모형으로는 장단기 메모리(Long Short-Term Memory, LSTM) 모형이 활용되었다. 딥러닝 모형의 입력 데이터는 유역에서의 강우특성이나 토양수분, 증발산, 식생 특성들을 나타내는 인자이며, 모의 결과는 유역에서 발생한 총 유출량으로 강우손실 모형들의 매개변수 값들은 이들을 활용하여 도출될 수 있다. 산정된 매개변수 값들을 강우손실 모형에 적용하여 실제 유역들에서의 유효우량 산정에 활용해보았으며, 동역학파 기반의 강우-유출 모형을 사용하여 유출을 예측해보았다. 예측된 유출수문곡선을 관측 자료와 비교 시 NSE=0.5 이상으로 산정되어 유출이 적절히 예측되었음을 확인했다.

  • PDF

포아송 클러스터 가상강우생성 웹 어플리케이션 개발 및 검증 - 우리나라에 대해서 (Development and validation of poisson cluster stochastic rainfall generation web application across South Korea)

  • 한재문;김동균
    • 한국수자원학회논문집
    • /
    • 제49권4호
    • /
    • pp.335-346
    • /
    • 2016
  • 본 연구에서는 포아송 클러스터 강우생성모형의 하나인 MBLRP 모형의 매개변수지도를 우리나라에 대하여 제작하고 이에 기반을 둔 가상강우생성 웹 어플리케이션을 개발 및 검증하였다. 이를 위하여 우리나라의 62개 ASOS 지상 강우 관측소에서 관측된 강우자료를 기반으로 서로 다른 수문모의의 목적(홍수량 모의, 장기 유출량 모의, 일반 모의)에 따른 MBLRP 모형의 매개변수지도를 산정한 후, 이를 Ordinary Kriging 기법을 통해 공간 보간하여 우리나라에 대한 매개변수지도를 제작하였으며, 이에 기반을 두고 가상강우 시계열을 생성하는 웹 어플리케이션을 개발하였다. 검증을 위하여 웹어플리케이션을 사용하여 가상강우를 생성한 후 평균, 분산, 자기상관계수, 무강우 확률, 극한강우량 및 다양한 유역에 대한 극한홍수량과 유출량을 계산하고 이를 관측 강우에 근거하여 산출된 값과 비교하였다. 비교 결과 가상 강우의 각종 통계값은 관측강우에 근거한 값과 매우 유사하게 나타났으나, 극한강우와 극한홍수는 관측치에 근거한 값과 비교하여 16%-40% 정도 과소산정되는 경향을 보였다. 이러한 결과는 교정계수로 활용할 수 있도록 등고선도의 형태로 제공되었다. 본 연구에서 개발한 웹 어플리케이션은 모형의 매개변수 산정부터 가상 강우 시계열 생성까지 일련의 과정을 포함하고 있어 강우자료를 필요로 하는 다양한 수문 분석에 활발히 활용될 것으로 기대된다.

우리나라의 연 강수량, 계절 강수량 및 월 강수량의 확률분포형 결정 (The Determination of Probability Distributions of Annual, Seasonal and Monthly Precipitation in Korea)

  • 김동엽;이상호;홍영주;이은재;임상준
    • 한국농림기상학회지
    • /
    • 제12권2호
    • /
    • pp.83-94
    • /
    • 2010
  • 본 연구의 목적은 우리나라의 연 강수량, 계절 강수 량 그리고 월 강수량의 최적 확률분포형을 선정하는 것이다. 이를 위해서 전국 32개의 강우 관측소에서 얻은 자료에 대하여 L-모멘트 비 다이어그램과 평균가중거리 값을 이용하여 각 강수량별 최적 확률분포를 산정하였으며, 최종적으로 선정된 최적 확률분포형을 관측 지점별로 적합도 검정을 실시하였다. 그 결과, 연강수량에서는 3변수 Weibull 분포(W3), 봄과 가을에는 3변수 대수정규분포(LN3), 여름과 겨울에는 일반화된 극치분포(GEV)가 관측값에 가장 잘 적합하는 것으로 나타났다. 또한, 월 강수량에서는 1월은 LN3, 2월과 7월은 W3, 3월은 2변수 Weibull 분포(W2), 4월, 9월, 10월, 11월은 일반화된 Pareto 분포(GPA), 5월과 6월은 GEV, 그리고 8월과 12월은 log-Pearson type III 분포(LP3)가 가장 잘 적합하였다. 하지만, 최적 확률분포형의 지점별 적합도 검정의 결과, 1월, 4월, 9월, 10월, 11월의 GPA와 LN3에 대한 기각율이 확률 분포의 매개변수 추정에서의 오류와 상대적으로 높은 AWD 값으로 인하여 매우 높게 나타났다. 한편, 23개 관측소의 자료를 추가하여 분석해본 결과 기존의 32개 의 관측소 자료를 이용한 것과 큰 차이를 나타내지 않았다. 종합적으로 보다 적합한 확률분포형을 선정하기 위해서는 더 장기간의 표본자료를 이용한 추가적인 연구가 필요할 것으로 판단된다.

파레토 최적화와 최소최대 후회도 방법을 이용한 부정류 계산모형의 안정적인 매개변수 추정 (Robust parameter set selection of unsteady flow model using Pareto optimums and minimax regret approach)

  • ;정은성;전경수
    • 한국수자원학회논문집
    • /
    • 제50권3호
    • /
    • pp.191-200
    • /
    • 2017
  • 본 연구에서는 부정류 계산모형의 안정적인 매개변수를 선정하기 위하여, 다수 지점의 관측치를 고려한 모형보정의 결과로부터 얻은 파레토 최적화와 최소최대 후회도 방법(minimax regret approach, MRA)을 결합하는 방법을 제안하였다. 여러 지점의 관측치를 고려한 모형의 보정은 다목적 최적화 문제로서, 통합접근법을 적용하여 최적해를 구하였다. 통합접근법은 여러 지점에 대한 가중치를 결합하여 하나의 목적함수를 얻고, 여러 번의 개별 최적화를 수행함으로써 다수의 파레토 최적해들을 구하는 방법이다. 이때 유량에 따른 조도계수의 가변성을 나타내는 두 개의 매개변수로 구성된 관계식을 이용하여 두 구간에 대한 매개변수들을 모형의 추정 대상 매개변수로서 최적화하였다. 이후 각기 다른 홍수사상에 대해 보정과 검증을 수행하였으며 각각에 대한 평가지표의 후회도를 정량화하였고 이를 결합한 결합후회도를 산정하였다. 이를 기준으로 파레토 최적해들의 순위를 결정하였다. 계산결과 추정된 모형의 가변조도계수와 그로부터 얻은 두 개 지점에서의 표준화된 RMSE들은 두 지점에 대한 가중치의 조합에 따라 선택되는 매개변수 값에 따라 달라짐을 알 수 있었다. 본 연구에서 제시한 방법은 수문 및 수리모형의 다수의 관측지점의 자료를 이용한 매개변수 산정문제에 있어서 안정적인 해를 도출할 수 있다.