• Title/Summary/Keyword: 관절 토크

Search Result 87, Processing Time 0.028 seconds

Torque Optimizing Control of Redundant Manipulators (여유자유도 로봇을 위한 최적토크제어)

  • Lee, Bo-Hyun;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.758-760
    • /
    • 2000
  • 본 논문에서는 기구적으로 여유자유도를 갖는 로봇 매니퓰레이터 시스템을 대상으로 하여, 로봇 랜드가 주어진 제적을 추종할 수 있는 관절 토크를 유도하기 위한 동적제어 식을 새로이 구성하고, 동적제어식을 만족하는 관절 토크 해들 중에 국소적으로 토크의 크기를 최적화하는 해를 사용하는 최적토크제어를 제안한다. 최적토크를 구하는 문제에 있어 관절 토크에 가중치 행렬을 적용하여 각 관절 토크의 최대 크기의 비를 반영할 수 있도록 한다. 또한, 로봇 핸드 자코비안-관성 역행렬의 영공간에서 나타나는 영공간 관절 속도를 정의하고 이러한 영공간 관절속도가 최적토크제어에서는 로봇 시스템을 불안정하게 할 수 있다는 것을 보인다. 최적토크 제어의 이러한 문제를 해결하기 위하여 영공간 관절 속도를 제거하기 위한 소산토크를 유도하고, 최적토크제어식에 소산토크를 추가하는 방법을 제안한다. 평면형 3-자유도 로봇을 대상으로 한 모의실험을 통해 제안된 제어 방법의 우수성을 검증하고 그 결과를 분석한다.

  • PDF

Joint Module with Joint Torque Sensor Having Disk-type Coupling for Torque Error Reduction (토크 오차 감소를 위한 디스크형 커플링을 갖는 토크센서가 내장된 로봇 관절모듈)

  • Min, Jae-Kyung;Kim, Hwi-Su;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.133-138
    • /
    • 2016
  • Force control and collision detection for a robot are usually conducted using a 6-axis force/torque sensor mounted at the end-effector. However, this scheme suffers from high-cost and the inability to detect collisions at the robot body. As an alternative, joint torque sensors embedded in each joint were used, which also suffered from various errors in torque measurement. To resolve this problem, a robot joint module with an improved joint torque sensor is proposed in this study. In the proposed torque sensor, a cross-roller bearing and disk-type coupling are added to prevent the moment load from adversely affecting the measurement of the joint torque under consideration. This joint design also aims to reduce the stress induced during the assembly process of the sensor. The performance of the proposed joint torque sensor was verified through various experiments.

Torque Sensor Based Flexible Joint Robot Arm Controller Design (토크센서 기반 유연관절 로봇 팔 제어기 설계)

  • Lee, Ho-Sun;Oh, Yong-Hwan;Song, Jae-Bok;You, Bum-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1831_1832
    • /
    • 2009
  • 본 논문에서는 유연관절 로봇 팔 제어를 위한 토크센서 기반의 외란에 강인한 제어기 설계를 다루고 있다. 로봇은 관절의 토크센서를 통해 관절에서 발생하는 토크의 측정이 가능하며 외란에 강인한 제어기 설계를 위해 외란 관측기가 적용 되었다. 외란관측기는 시스템에 작용하고 있는 외란을 상쇄하는 역할을 한다. 본 논문에서 설계된 제어기의 성능은 컴퓨터 모의실험을 통하여 확인하도록 한다.

  • PDF

Effects of a Heel Wedge on the Knee Varus Torque During Walking (보행 시 무릎관절 내번토크에 미치는 후족왯지의 영향)

  • 정임숙;김사엽;김영호;정도영;권오윤
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.289-293
    • /
    • 2004
  • In the present study, knee varus torque and mediolateral accelerations were measured using the three-dimensional motion analysis system and a linear accelerometry in odor to determine the effect of heel wedges during walking. Wedges were inclined with 10$^{\circ}$ and 15$^{\circ}$ in medial and lateral directions respectively Both knee varus torques and mediolateral accelerations showed two distinct positive peaks in loading response and preswing. Medial wedges resulted in significantly increased both knee varus torque and lateral acceleration in loading response, compared with the barefoot walking(p<0.05). On the other hand, lateral wedges decreased them in loading response(p<0.05). This became more significant for more inclined wedges. However, no significant correlations were found between knee varus torque and lateral acceleration according to the angle of heel wedges in preswing. From this study, it was found that a lateral wedge would be helpful to treat osteoarthritis, decreasing knee varus torque in loading response. In addition, lateral acceleration of the knee joint might be an alternative to determine the effect of wedges and the alignment of the knee joint during walking, instead of measuring knee torque by the three-dimensional motion analysis.

Identification of Spastic Joint Pathologies using Isokinetic Movement (등속운동을 이용한 경직성 관절장애 정량화)

  • Lee Chang-Han;Heo Ji-Un;Kim Chul-Seung;Eom Gwang-Moon
    • Science of Emotion and Sensibility
    • /
    • v.7 no.4
    • /
    • pp.19-24
    • /
    • 2004
  • The purpose of this study is to evaluate the possibility of identifying joint damping property through commercially available isokinetic ergometer (BIODEX). The proposed method is to estimate the damping torque of the knee joint from the difference between the external joint torque for maintaining isokinetic movement and the gravity torque of the lower leg. The damping torque was estimated at various joint angular velocities, from which the damping property would be derived. Measurement setup was composed of the BIODEX system with an external force sensor and Labview system. Matlab was used in the analysis of the damping property. The experimental result showed that the small variation in angular velocity due to acceleration and deceleration of the crank arm resulted in greater change of inertial torque than the damping torque. Therefore, the estimation of damping property from the isokinetic movement is difficult.

  • PDF

Analysis of Golf Swing Motion and Applied Loads on the Human Body Using Soft-$Golf^{TM}$ Club (소프트 골프 클럽을 이용한 골프 스윙 동작과 인체 작용 하중 분석)

  • Kwak, Ki-Young;So, Ha-Ju;Kim, Sung-Hyeon;Kim, Nam-Gyun;Kim, Dong-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.472-478
    • /
    • 2011
  • The purpose of this study was to analyze the kinetic effect of Soft-$golf^{TM}$ instrument on the human body structure. To analyze the kinetic effect of Soft-$golf^{TM}$ instrument, Golf swing using Soft-$golf^{TM}$ instrument and regular golf instrument was captured. And then Upper limbs and lumbar joint torques was calculated via computer simulation. Five man participated this study. Subjects performed golf swing using a regular golf and Soft-$golf^{TM}$ instrument. Golf swing motion was captured using three position sensor, active infrared LED maker and force plate. Golf swing model was generated and simulated using ADAMS/LifeMOD program. As a results, joint torque during Soft-golf swing were lower than regular golf swing. Thus soft-golf swing have joint load lower than regular golf swing and contribute to reduce joint injury.

A Analysis of Isotonic Torque of Shoulder Joint for Overthrow Pitcher of Professional Baseball Player (프로야구 오버드로우 투수의 견관절 등속성 토크에 관한 분석)

  • So, Jae-Moo;Kim, Young-Il;Kim, Hyo-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.295-306
    • /
    • 2002
  • The purpose of this study was analysis inter relative the ball velocity and isotonic torque of shoulder joint. The subject were twelve overthrow pitcher of professional baseball player. The measurement was used Cybex 6000. The results of this study were as follows : 1. As the siting position of maximal adduction torque of dominant, A group was higher than B group. As the non-dominant, B group was higher than A group for improved angular velocity. There is no significance difference between group. 2. As the siting position of maximal abduction torque of dominant and non-dominant, B group was higher than A group for all measurement. There is no significance difference between group. 3. As the layed position of maximal internal torque of dominant, A group was higher than B group. As the non-dominant was just higher at $180_{\circ}$/sec than B group, B group was higher at $60_{\circ}$/sec and $300_{\circ}$/sec than A group. There is no significance difference between group. 4. As the layed position of maximal external torque of dominant and non-dominant, A group was more higher than B group for all measurement. There is no significance difference between group. 5. As the standing position of maximal internal torque of dominant, A group was just higher at $60_{\circ}$/sec than B group, B group was higher at $180_{\circ}$/sec and $300_{\circ}$/sec than A group. As the non-dominant, B group was higher than A group. There is no significance difference between group. 6. As the standing position of maximal external torque of dominant, A group was higher $60_{\circ}$/sec and $180_{\circ}$/sec than B group. But B group was higher $300_{\circ}$/sec than A group. As the non-dominant, B group was higher than A group. There is no significance difference between group.

A Study of Design of Outer Rotor Type BLDC Motor for Service Robot Arm (유한요소법을 이용한 서비스 로봇관절용 외전형 BLDC 모터설계에 관한 연구)

  • Kim, Young Kyoun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.198-202
    • /
    • 2015
  • This s paper presents characteristics Analysis of Outer Rotor type BLDC Motor. To reduce the cogging torque and to make the high back EMF constant of the motor, Not only magnetization directions of a permanent magnet are investigated, but also a tooth chamfer of a stator is optimized. The design and analysis results are verified with experimental results.

직접구동 로봇의 기구설계와 제어

  • 김영탁
    • Journal of the KSME
    • /
    • v.31 no.7
    • /
    • pp.626-635
    • /
    • 1991
  • 직접구동 로봇의 특성과 문제점에 대하여 기술하고 기계설계와 제어방식에 의한 대책 및 개선 방향을 해설하였다. 직접구동 로봇은 고속, 고정밀도, 토크제어의 가능 등 여러 가지 좋은 잠재 력을 가지고 있는 반면 자체 중량에 비하여 가반중량이 작고 관절 간의 간섭 및 비선형력이 크며 부하감도가 높은 등의 문제점이 있음을 나타내고 모터의 배치나 기구의 변환에 의해 이와 같은 문제점을 어느 정도 개선할 수 있음을 보였다. 또한 비간섭 . 자세독립제어, 토크피드백 제어에 의하여 직접구동의 장점을 충분히 활용하기 위해서는 아직도 해결하여야 할 문제가 많다. 그 중에 무엇보다도 중요한 것은 소형 경량이면서 높은 토크를 발생시킬 수 있는 모터의 개발이다. 최근 초음파 모터의 연구개발이 활발한데 이를 이용한 직접구동 모터의 개발이 기대된다.

  • PDF

A Study on Impact Control of Planar Redundant Manipulator using A Intelligent Control (지능제어를 이용한 평면 여자유도 매니퓰레이터의 충돌제어에 관한 연구)

  • Yoo, Bong-Soo;Koo, Seong-Wan;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.787-796
    • /
    • 2008
  • When the manipulator collides with surroundings, there occurs an impulse. To reduce the impulse, the self motion should maintain the manipulator's position by the minimally effective mass. At this time, we can use the local joint torque minimization algorithm to resolve the redundancy. In this study, to reduce the impulse and damages by the impact between the manipulator and surroundings, new control algorithm for the minimization of the joint torque using the kinetic redundancy and the impact minimization is proposed. It adapts fuzzy logic and genetic algorithm to the conventional local joint torque minimization algorithm. The proposed algorithm is applied to a 3-DOF redundant planar manipulator. Simulation results show that the proposed algorithm works well.