• Title/Summary/Keyword: 관절 제어기

Search Result 128, Processing Time 0.03 seconds

Simulating tentacle Creature with External Magnetism for Animatronics (외부 자력을 이용한 촉수 생명체 애니매트로닉스 시뮬레이션)

  • Ye Yeong Kim;Do Hee Kim;Ju Ran Kim;Na Hyun Oh;Myung Geol Choi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.5
    • /
    • pp.1-9
    • /
    • 2023
  • The control technology of animatronics is an interesting topic explored in various fields, including engineering, medicine, and art, with ongoing research efforts. The conventional method for controlling the movement of animatronics is to use electric motors installed inside the body. However, this method is difficult to apply when expressing a narrow space inside the body. In this study, a method of using external forces instead of installing mechanical devices inside the body was proposed to control the movement of a thin and long tentacle organism. Specifically, in this study, the joint body of animatronics was made of magnetic metal material so that it could be affected by the force of an externally installed electromagnet. The strength of the electromagnet was controlled by a PID controller to enable real-time control of the position of the animatronics body. In addition, the magnet was made to rotate, and the speed of rotation was changed to create various movements. Through virtual environment simulations, our experiments demonstrate the superiority of the proposed method, showcasing real-time control by users and the creation of animations in various styles.

Recording and Analysis of Peripheral Nerve Activity Using Multi-Electrode Array (다채널 신경전극 어레이를 이용한 말초 신경신호의 측정 및 분석)

  • Chu, Jun-Uk
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.279-285
    • /
    • 2016
  • Reliable recording and analysis of peripheral nerve activity is important to recognize the user's intention for controlling a neuro-prosthetic hand. In this paper, we present a peripheral nerve recording system that consisted of an intrafascicular multi-electrode array, an electrode insertion device, and a multi-channel neural amplifier. The 16 channel multi-electrode array was stably implanted into the sciatic nerve of the rat under anesthesia using the electrode insertion device. During passive movements and mechanical stimuli, muscle and cutaneous afferent signals were recorded with the multi-channel neural amplifier. Furthermore, we propose a spike sorting method to isolate individual neuronal unit. The muscle proprioceptive units were classified as muscle spindle afferents or Golgi tendon organ afferents, and the skin exteroceptive units were categorized as slow adapting afferents or fast adapting afferents. Experimental results showed that the proposed method could be applicable to record and analyze peripheral nerve activity in neuro-prosthetic systems.

Comparison of learning performance of character controller based on deep reinforcement learning according to state representation (상태 표현 방식에 따른 심층 강화 학습 기반 캐릭터 제어기의 학습 성능 비교)

  • Sohn, Chaejun;Kwon, Taesoo;Lee, Yoonsang
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.55-61
    • /
    • 2021
  • The character motion control based on physics simulation using reinforcement learning continue to being carried out. In order to solve a problem using reinforcement learning, the network structure, hyperparameter, state, action and reward must be properly set according to the problem. In many studies, various combinations of states, action and rewards have been defined and successfully applied to problems. Since there are various combinations in defining state, action and reward, many studies are conducted to analyze the effect of each element to find the optimal combination that improves learning performance. In this work, we analyzed the effect on reinforcement learning performance according to the state representation, which has not been so far. First we defined three coordinate systems: root attached frame, root aligned frame, and projected aligned frame. and then we analyze the effect of state representation by three coordinate systems on reinforcement learning. Second, we analyzed how it affects learning performance when various combinations of joint positions and angles for state.

A Study on Control of Walking Assistance Robot for Hemiplegia Patients with EMG Signal (EMG 신호로 반신불수 환자의 보행 보조로봇 제어에 관한 연구)

  • Shin, D.S.;Lee, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • The exoskeleton robot to assist walking of hemiplegia patients or disabled persons has been studied in this paper. The exoskeleton robot with degrees of freedom of 2 axis has been developed and tested for joint motion. The obtained EMG signal from normal person was analyzed and the control signal was extracted from it for convenient and automotive performance of assistance robot to help hemiplegia patient walks as normal person does. the purpose of using FES(Functional Electrical Stimulation) for hemiplegia patient's walk is to restore damaged body function by this, but this could give fatal electrical shock to patients by wrong use or cause quick fatigue in muscle by continuous stimulation. The convenient movement of hemiplegia patients with minimum muscle fatigue was looked possibly by operation of assistance robot exoskeleton using control signal. and the walking assistance exoskeleton robot seemed works more efficiently than using FES stimulator. The experiment in this study was performed based on usual motion in our life like walking, standing-up, sitting-down, and particularly feedback control system using Piezo sensor along with button switch was applied for smooth swing motion in walking. The experiment also shows that hemiplegia patients can move conveniently by using electromyogram signal of healthy leg for the operation signal of assistance robot system attached at damaged symmetrical leg.

  • PDF

Design and manufacture of mini loop coil probe style magnetic curer for peripheral nervous system treatment (말초신경계 치료를 위한 초미니 Loop-코일프로브 삽입형 자기치료기의 설계 및 제작)

  • Kim, Whi-Young;Choi, Jin-Young;Park, Sung-Jun;Kim, Hee-Je
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.2 no.1
    • /
    • pp.153-169
    • /
    • 2007
  • It is as result that study to apply mini magnet nerve curer in peripheral nervous system disease treatment. Design and embodied action power and Control Unit in cylinder form of magnet roof object firstly. Yielded service area about special quality of probe of roof object cylinder style and treatment area dimension and distance of treatment pulse secondly. Embody pulse forming course energy value by Probe's form by third, could embody treatment pulse by disease. Specially, through a special quality experiment, saved Damping pulse form and treatment pulse form etc. variously. Lately, embodied this to aid a little in disease treatment that follow that there is no invasion that there is no stimulation by medicine development. Go amplitude treatment pulse (traditional magneto-therapy of greatly great that strong) does curative effect greatest at short time and becomes thought that demand is magnified greatly at the future in this research.

  • PDF

Knee Joint Control of New KAFO for Polio Patients Gait Improvement (소아마비 환자의 보행개선을 위한 새로운 장하지 보조기의 무릎관절 제어)

  • 강성재;조강희;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.132-135
    • /
    • 2002
  • In the present study, an electro-mechanical KAFO (knee-ankle-foot orthosis) which satisfies both the stability in stance and the knee flexion in swing was developed and evacuated in eight polio patients. A knee joint control algorithm suitable for polio patients who are lack of the stability in pre-swing was also developed and various control systems and circuits were also designed. In addition, knee flexion angles and knee moments were measured and analyzed for polio patients who used the developed KAFO with the three-dimensional motion analysis system. Energy consumption was also evaluated for the developed KAFO by measuring the movement of the COG (center of gravity) during gait. From the present study, the designed foot switch system successfully determined the gait cycle of polio patients and controlled knee joint of the KAFO, resulting in the passive knee flexion or foot clearance during swing phase. From the three-dimensional gait analysis for polio patients, it was found that the controlled-knee gait with the developed electro-mechanical KAFO showed the knee flexion of 40$^{\circ}$∼45$^{\circ}$ at an appropriate time during swing. Vertical movements of COG in controlled-knee gait (gait with the developed electro-mechanical KAFO) were significantly smaller than those in looked knee gait(gait with the locked knee Joint). and correspondingly controlled-knee gait reduced approximately 40% less energy consumption during horizontal walking gait. More efficient gait patterns could be obtained when various rehabilitation training and therapeutic programs as well as the developed electro-mechanical KAFO were applied for polio patients.

  • PDF

3D-Conformal Radiotherapy for Head and Neck Cancers at Asan Medical Center (두경부종양에서 3차원 입체조형치료의 서울아산병원 경험)

  • Lee Sang-Wook;Chang Hye-Sook;Ahn Seung-Do;Yi Byong-Yong;Choi Eun-Kyung;Nho Young-Ju;Back Geum-Mun;Kim Jong-Hoon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.21 no.2
    • /
    • pp.151-157
    • /
    • 2005
  • 목적: 다양한 발생부위에서 발생한 두경부종양을 대상으로 3차원 입체조형치료를 시도하여 표적체적 내 선량균일성과 주변장기의 선량분포변하를 알아보고자 하였다. 대상 및 방법: 1995년 1월부터 1996년 12월까지 3차원 입체조형치료를 시행 받은 38명에 분석을 시행하였다. 3차원 입체조형 치료는 동일평면 또는 비동일평면상에서 4개에서 14개의 조사면 수로 시행되었다. 3차원 입체조형치료계획시 표적 체적에 $50{\sim}82Gy$의 선량을 처방하였고, 이하선 안구, 척수, 측두하악관절 등을 보호하고자 하였다. 3차원 입체조형치료 계획을 기존의 2차원 치료계획과 비교하기 위하여 표적체적과 주변정상자기의 선량체적히스토그램, 평균선량, 표적체적 내에서 처방선량의 $95{\sim}105%$의 선량이 분포하는 체적을 비교하였다 치료계획에서 실제 치료시까지 소용되는 비용효과를 비교하였다. 대상환자의 평균추적기간은 34개월이었다. 결 과: 3차원 입체조형시료는 2차원 치료에 비해서 표적체적내 평균선량이 평균 10% 증가하였고, 주변정장기에 조사되는 방사선량이 현저히 감소됨을 관찰할 수 있었고 표적체적에 대한 등선량 곡선 분포가 우수함을 관찰할 수 있었다. 결 론: 3차원 입체조형치료는 두경부종양에서 표적체적의 선량 균일성이 증가하였고, 주변장기의 보존이 가능할 것으로 생각되었다. 따라서 본 저자들은 3차원 입체조형치료가 두경부종양에서 국소제어율과 무질병생존율 향상에 기여할 것으로 생각하였다.

Voluntary Motor Control Change after Gait Training in Patients with Spinal Cord Injury (척수신경손상 환자의 보행훈련 전.후의 능동적 근육제어의 변화)

  • 임현균;이동철;이영신;셔우드아더
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2003
  • In this study, muscle activity was measured using surface EMG (sEMG) during a voluntary maneuver (ankle dorsiflexion) in the supine position was compared pre and post gait training. Nine patients with incomplete spinal cord injury participated in a supported treadmill ambulation training (STAT), twenty minutes a day, five days a week for three months. Two tests, a gait speed test and a voluntary maneuver test, were made the same day, or at least the same week, pre and post gait training. Ten healthy subjects' data recorded using the same voluntary maneuvers were used for the reference. sEMG measured from ten lower limb muscles was used to observe the two features of amplitude and motor control distribution pattern, named response vector. The result showed that the average gait speed of patients increased significantly (p〈0.1) from 0.47$\pm$0.35 m/s to 0.68$\pm$0.52 m/s. In sEMG analysis, six out of nine patients showed a tendency to increase the right tibialis anterior activity during right ankle dorsiflexion from 109.7$\pm$148.5 $mutextrm{V}$ to 145.9$\pm$180.7 $mutextrm{V}$ but it was not significant (p〈0.055). In addition, only two patients showed increase of correlation coefficient and total muscle activity in the left fide during left dorsiflexion. Patients' muscle activity changes after gait training varied individually and generally depended on their muscle control abilities of the pre-STAT status. Response vector being introduced for quantitative analysis showed good Possibility to anticipate. evaluate, and/or guide patients with SCI, before and after gait training.